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e CHAPTER I

§ INTRODUCTION

A

W Radar Target Identification (RTI) techniques have been developed over the
? past several years. Work at The Ohio State University (OSU) ElectroScience Lab-

- oratory (ESL) has established basic concepts and algorithms that form a wide base

i of methods for solving the RTI problem (1 - 17]. Research areas have included the
. investigation of optimal frequency ranges [13], where wavelengths extend from the

‘;.‘: Rayleigh region to the optical region, and polarization studies [6] involving various
~ linear and non-linear combinations of the radar scattering coefficients. Various

u identification algorithms have also been analyzed by computer simulation tech-

:5:,' niques and applied to different radar class structures, such as land vehicles, ocean
- ships, and aircraft [13 - 17].

!. Ksienski {1] concluded that the optimal frequency range for radar target iden-

¢ tification should lie in the Rayleigh - resonance frequency range where the wave-

R length is about the same size or larger than the size of the target. In the Rayleigh

3: region the scattered field is descriptive of the shape and volume of the target. In
) the resonance region the scattered field is due to re-radiating surface currents set

i up on the target body and also carries target shape and size information. In both
i of these regions a desired feature for target identification is found; shape and size
- information and small changes in aspects have little effect on the character of the

ﬁ- radar return.

::: 1
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In contrast, in the optical region, where the wavelength is small compared

O3

O to the target size, small changes in aspects can cause significant changes in the

amb

A scattering characteristics. The scattering mechanism in the optical region are

O related to the interaction of the specular points and contain information on the

P

Mevly finer details of the target. If the separation of the specular points is large compared \

the incident wavelength; small changes in aspects cause significant changes in the

....
g
-
o
=3

i scattering characteristics.
‘:::':: The ESL has developed a multi-frequency data base consisting of ocean ship, ﬁ

aircraft, and ground vehicle radar signatures, and has explored radar detection

- ;? methods and various classification methods for each class of targets [5]. The ESL 3
'Eg‘ has also been involved with the statistical analysis in system simulations, model ﬂ '
:‘: developments, and evaluation of system performance by means of Monte Carlo i
‘t"}_‘) simulations (7]. ;; E
: To apply target identification techniques, one must have a library of informa- “
:::‘:: tion or features (i.e., feature space) describing each target to be identified. The ﬁ :
::gse‘ feature space is a multidimensional space containing vector quantities. In the fea- 23 '
';:: ture space one would like to have linear separability between all the targets, thus L
;_.';l;, forming distinct hyperplanes between elements contained in the feature space. In 5 (
;:: % the case of complex targets, such as aircraft, ships, and ground vehicles, one might
,::’:" attain distinct hyperplanes (i.e., separability between the three classes). However ¥,
- within a class, say of small jet fighters, features creating distinct hyperplanes may
c: ) :{E

be impossible to determine. ;

For the radar problem, the feature space consists of information contained in

[ =

Pl
prrd

\

the electromagnetic energy return from the scattering object. Information avail-

e
%
-

i able from this energy spectrum depends on both the transmitter and the scatterer. ;:
Q‘ w* L™
's?‘ Features such as the transmitted frequency, received amplitude, transmitted po-
‘ L
Q:g“" 2 ¢
":::: :
Q.'i. ﬁ 4
N “. ] )

I
il
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W) larization, received polarization, and target range, are available to most radar

systems. Others features, such as received phase, target speed, target direction,

'y

Y and Radar Cross Section (RCS) can also be obtained.
Y
; ri‘ It is apparent that feature selection is a very important consideration of the

radar target identification problem. Of course one would like to have a large

H
22

catalog of features to choose from in order to make the best possible decision that

!“'

s

f'::: }‘_"’ identifies the target correctly. However, by selecting more features, the complexity
?‘!o‘ 'Gs

of the measurement, the cost of the system, the dimensionality of the classification

e |

vector, and the data processing, all increase. To minimize the cost and expedite

o the decision making process, one needs to select optimum features that meet some

- o o
)
-
-
Pt

level of target identification performance.

s
K o &N The properties of the polarization diverse data base allows the investigation of
' -
‘ \.‘ . 3 . . . . .
:o : many new and different radar polarization states by creating circular polarization
.
" S states and new identification target descriptors known as “feature vectors”. With
:": the goal of obtaining additional knowledge on optimal feature selection, this study
.
AR . .
R analyzes the performance of many different radar polarization states, frequency
i ) ; ranges, and the number of frequencies by means of a Monte Carlo simulation.
" . This study also validates earlier results based on optimal RTI methods by analyzing
.“'.
:—__1: o these methods on a more complete and realistic data base of commercial aircraft.
NS
iy With the contents of the report, we hope to give the RTI designer some insight on
L _ .
A the tradeoffs and characteristics of the aircraft class of targets.
L
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R CHAPTER II

DATA AND DATA BASE FORMAT

2
S
.'-
o~

2.1 Introduction

S o

In order to implement a Monte Carlo simulation, a data base is required. The

E 3
Tl

:' L data base for this simulation study consists of calibrated complex monostatic radar

v

Eé': N returns from five metallic coated scale model aircraft: Concord, DC10, 707, 727, g
»

and 747. The silhouettes and the full-scale dimensions of these commercial aircraft

"

‘%: are shown in Figures 1 through 5. ;
i = ."‘ﬁ'
: ' The data base consists of calibrated complex (coherent) monostatic radar re-

] '
e turns measured at various azimuth angles, frequencies, and polarizations, at an i
:._: elevation and roll angle of 0°. The data was taken at the OSU ESL compact range
R0 e
“’3 facility [18] over the frequency bands of 1 to 12 GHz and 18 to 35 GHz (unscaled). e
) Once the data were measured, a sequence of calibration steps were implemented

]

:5. to remove unwanted background clutter and receiver system effects. Using an en-
3

¢

: r‘:': hanced sequence of calibration steps, described by Kimball {19], one can obtain an

essentially error (noise) free measurement of unscaled coherent radar backscatter-

0 ..l ()
\
1‘:: 3 ‘. g
i

calibration steps, and data scaling are provided in the following sections.

ing information. A brief description of the compact range, measurement squence,

|3
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- Length overall 202 £t 3.6 in (61.66m)
- Height overall 40 £t 0.0 in (12.19m)
R wing span 83 £t 10.0 in (25.56m)

Figure 1: Concord Silhouette and Physical Data
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_ Sxternal Dimensions:
Sy s Length overall 181 £t 7.2 in (5%.315m)
S Height overall 7 £t 7.0 in (17.55m)
3 L. wing span 165 ft 4.0 in (50.39m) °y
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ol . . .
e Figure 2: DC10 Silhouette and Physical Data
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) Bxternal Dimensions: {'
u'é |
‘a'.. Length overall 152 £t 11.0 in (46.61m) W X
ak! Beight overall 42 ft 5.0 in (12.93m) '
fagl® wing span 145 £t 9.0 in (44.42») -
3 Figure 3: 707 Silhouette and Physical Data ~§' L
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External Dimensions:

Length overall 231 £t 4.0 in (70.51m)
Height overall 63 £t 5.0 in (19.33m)
wing span 195 £t 8.0 in (59.64m)

Figure 5: 747 Silhouette and Physical Data

2.2 Measurment Facilities

The OSU ESL compact antenna range facility consists of a 60 foot long by
40 foot wide by 20 foot high anachoic chamber. The facility utilizes a Scientific
Atlanta (SA) compact range parabolic reflector, a SA 1780 receiver, a Watkins
Johnson WJ1250A frequency synthesizer, a Digital Equipment Corporation PDP-
11/23 controlling computer, and a low radar cross section target positioner. A
block diagram of this arrangement is shown in Figure 6 and a photograph of the
compact range is shown in Figure 7.! By utillizing the compact antenna range
in a monostatic radar operation, far field backscattered radar signatures of small
targets can be obtained.

The SA parabolic reflector enables the facility to illuminate a 4 foot by 4

11984 aircraft measurement configuration. The range has been significantly improved in recent

years.
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S,,.: foot target zone with a columnmated plane wave, simulating the far field condi-
::- tion (i.e., locally plane wave effect) of most real operational radar systems. The
:*:._: source, a highly accurate digitally controlled frequency synthesizer, is operated in
E*‘-_ a continous wave mode and feeds both the transmitting antenna and the refci e
KON channel of the SA 1780 receiver. The monostatic ineasurement is obtained by plac-
Wiy ing both transmitting and receiving antennas at the focus of the parabolic reflector.
:. The antennas used in this process were rectangular aperture horn antennas, thus
::‘:. ' providing high cross polarization rejection. The antennas were placed in different
s arrangements to obtain radar signatures for three different polarization schemes.
:: b:’ The polarization schemes measyred are listed below as polarization types:
o
: » (HH)  Transmitting Horizontal polarization, Receiving Horizontal polarization.
: $}, (VV)  Transmitting Vertical polarization, Receiving Vertical polarization.
; i_‘, (HV) Transmitting Horizontal polarization, Receiving Vertical polarization.
‘ :::\ The polarization types HH, VV are commonly referred to as the co-pol polar-
’\".: izations, and the polarization type HV is referred to as the cross-pol polarization.
il; From these three polarization types an orthogonal scattering matrix can be formed,
‘?" and from this matrix other polarization states can be mathematically synthesized.
w : Note that by the electromagnetic theorem of reciprocity, the polarization types
e VH (Transmitting Vertical polarization, Receiving Horizontal polarization) and
‘ - HV are equal. Finally, the controller implements a frequency scan measurement
'S‘é by stepping the digitally controlled synthesizer, and phase locked receiver, and
':.*;': recording both the amplitude and phase of the backscattered signal.
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2.3 Low-Error Backscattered Target Signatures

To obtain the “low-error” signature, additional steps are required other than
those described in the preceding section. These additional steps, as described in
detail by Kimball {19], require a calibration sequence designed to remove unwanted
background clutter from the target measurement and provide a scale correction
factor based on a mathematical representation of a reference target. This process
entails a measurement of the background environment (i.e., measurment of the
chamber without the target present), and a measurement of a reference target
such as a sphere for a co-pol measurement or a 45° tilted strip for a cross-pol

measurment.
2.3.1 Calibration Equation

To remove the background clutter and to scale the data to its correct backscat-

tered value, the following calibration equation is used:
foo £ (T-3) (2.1)
“" (k- B) '

where :

Tc  is the calibrated complex backscattered target signal voltage.

E  is the computed (exact) complex backscattered signal voltage
from a reference calibration target (i.e., sphere for co-pol,
45° strip for cross-pol measurments).

T  is the measured complex backscattered signal voltage with
the target installed in the test chamber.

B is the measured complex backscattered signal voltage with

no target present in the test chamber.
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R is the measured complex backscattered signal voltage with dhe
! a reference target installed in the test chamber (i.e., sphere "‘|'
o for co-pol, 45° strip for cross-pol). ?}
o
nyt 3"‘”
To ensure the best results in the calibration process, background and reference I
% (XK
~ target measurements are made after every five target measurements. Additional "l,
N signal processing techniques are also employed to achieve the final form of the ::::
i W'
low-error target backscattered signature. For example, digital filtering is applied K
o EX
N by the convolution of a Hanning window with the calibrated target data string, o,i
5 _ ’ ! ’t
Tc, which results in an equivalent time domain gating of the target region. By WY,

=]
-
a4
o
i

selecting the propcr parameters, a further suppression of background clutter is

3 produced without affecting the target signature. :ﬁ
o Faki
w» Finally a computer program called DATABASE [20] allows the storage of e

' ¥
i frequency formatted data strings at many different aspects angles and the three R
‘gt

base line polarization types HH, VV, and VH, into one single random-accessed l:;;

> '
i . . . iy
. data file. The data base program also joins calibrated target data strings measured 0

in subsectional frequency bands, and reformates the calibrated data strings to a

B
A

standard 50 MHz frequency increment. The Database format allows easy access ::s;
oy of calibrated target signatures by specifying the target name (file-name), azimuth :::‘
¢ angle, and polarization type in a Fortran call statement. The data bases were ‘!t“
@ created for the purpose of RTI computer simulation and consists of two sets: a :
" low-frequency data base set, and a high-frequency data base set. The low-frequency ::‘s
) g data base set consists mostly of continuous calibrated unscaled data strings from 1 .‘
E A to 12 GHz. The high-frequency data base set consists of unscaled data strings from ‘”
“r AL
q s 18 to 35 GHz. Listings from the DATABASE computer program characterizing :;j::‘
E 2 the RTI aircraft data bases are shown in Figures 8 through 13. \‘ g
~
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The Ohio State Univesity ElectroScience Laboratory =
Compact Range Experimental Data 1984 ! ;
Scale factor = Elevation angle = 0 degrees k
" 4
LOW FREQUENCY FORMATTED DATA BASE (GHz) ,\i k
'Y r
ASPECT (Deg) POLAFIZATION ;
L] na L] " Hv n " W "
\ {/
0 1-12 1-12 1-12 AU
10 1-12 1-12 1-12 4
15 1-12 NULL 1-12 - $
20 1-12 1-12 1-12 ﬁg !
25 6-12 NULL 6-12 '
30 1-12 1-12 1-12 -
35 6-12 NULL 6-12 -
40 1-12 1-12 1-12 2o
45 1-12 1-12 1-12 M
50 1-12 1-12 1-12 N
55 6-12 NULL 6-12 8
60 1-12 1-12 1-12 d
65 6-12 NULL 6-12 -
70 1-12 1-12 1-12 i
75 1-12 1-12 1-12 !
80 1-12 1-12 1-12 N
85 6-12 NULL 6-12 jH ,
90 1-12 1-12 1-12 X
95 6-12 NULL 6-12 ;
100 1-12 1-12 1-12 '
105 1-12 1-12 1-12 ﬂ
112 1-12 1-12 1-12 '
115 6-12 NULL 6-12 !
120 1-12 1-12 1-12 v 4
125 6-12 NULL 6-12 o "
130 1-12 1-12 1-12 -
135 1-12 1-12 1-12
140 1-12 1-12 1-12
145 6-12 NULL 6-12 4
150 1-12 1-12 1-12 o
155 6-12 NULL 6-12 r
N 160 1-12 1-12 1-12
&ﬁ 165 1-12 1-12 1-12 2
XL 170 1-12 1-12 1-12 ¢
175 6-12 NULL 6-12 !
180 1-12 1-12 1-12
3
o3 % N
t

Lo

&=

Figure 8: Concord Low-Frequency Data Base Map
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e The Ohio State Univesity ElectroScience Laboratory 3
~ Compact Range Experimental Data 1984 P
Scale factor = Elevation angle = 0 degrees
g M
~’ LOW FREQUENCY FORMATTED DATA BASE (GHz) N
. ASPECT (Deg) POLARIZATION +3
:‘_ L] HH L] L] HV " LI Va¥ ] .‘
kY g
0 1-12 1-12 1-12
» 10 1-12 1-12 1-12
<3 15 1-12 1-12 1-12
-, 20 1-12 1-12 1-12 b
30 1-12 1-12 1-12 "
40 1-12 1-12 1-12 e
! 45 1-12 1-12 1-12 &
i 50 1-12 1-12 1-12 .
50 1-12 1-12 1-12 b
70 1-12 1-12 1-12 .
N - 1-12 i-12 1-12 c
N 80 1-12 1-12 1-12 '(
’ 90 1-12 1-12 1-12 i
100 1-12 1-12 1-12 S
y 1n5 1-12 1-12 1-12 -3
. 110 1-12 1-12 1-12 &
120 1-12 NULL 1-12 !
130 1-12 NULL 1-12 =
.. 135 1-12 NULL 1-12 3
‘;<. 140 1-12 1-12 1-12 D
~~ 150 1-12 1-12 1-12 o
160 1-12 1-12 1-12 iy
165 1-12 1-12 1-12 3
! 170 1-12 1-12 1-12 )
~ 180 1-12 1-12 1-12 A
270 1-12 1-12 1-12 N
- $
= N
Y "
3 -;.
-
- o
. -0
b s
o A
. Figure 9: DC10 Low-Frequency Data Base Map g
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o The Ohio State Univesity ElectroScience Laboratory '
R Compac:. Range Experimental Data 1984 - U
A Scale factor = Elevation angle = 0 degrees !
¥ b
e LOW FREQUENCY FORMATTED DATA BASE (GHz) N
ASy ASPECT (Deg) POLARIZATION 2
$“ L} Hﬂ L} L] Hv L] » W L] ‘
ord 0 1-12 1-12 1-12 o
OO 10 1-12 NULL 1-12 -
2 15 1-12 1-12 1-12 4
20 1-12 1-12 1-12
Yl 25 6-12 NULL 6-12 2
VNS 30 1-12 1-12 1-6.3 o
i 35 6-12 NULL 6-12 N
40 1-12 1-12 1-12
208 45 1-12 1-12 1-12 )
" 50 1-12 1-12 1-12 s
Yo 55 6-12 NULL 6-12 "
. .:3 60 1-12 1-12 1-12 §
s 65 6-12 NULL 6-12 - M
Rk 70 1-12 1-12 1-12 ﬁ A
s 75 1-12 1-12 1-12
" 80 1-12 1-12 1-12
e, 85 6-12 NULL 6-12 .
.- 90 1-12 1-12 1-12 o
95 6-12 NULL 6-12 R
SO 100 1-12 1-12 1-12 -~
:\ 105 1-12 1-12 1-12
110 1-12 1-12 1-12 ﬁ A
115 6-12 NULL 6-12
) 120 1-12 1-12 1-12 ol
e 125 6-12 NULL 6-12 !
b, 130 1-12 1-12 1-12 o 8
'_‘;.: 135 1-12 1-12 1-12 ﬁ '
. 140 1-12 1-12 1-12
b\ 145 6~12 NULL 6-12
) 150 1-12 1-12 1-12
e 155 6-12 NULL 6-12 R
S 160 1-12 1-12 1-12 LY
2 165 1-12 1-12 1-12 '
N 170 1-12 1-12 1-12 ~
e 175 6-12 NULL 6-12 g
180 1-12 1-12 1-12 N
- 270 6-12 NULL 1-12 4
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Figure 10: 707 Low-Frequency Data Base Map b
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"n Compact Range Experimental Data 1984
:" . Scale factor = Elevation angle = 0 degrees .
. |
l'!
. g LOW FREQUENCY FORMATTED DATA BASE (GHz)
{ ~
L ASPECT (Deg) POLARIZATION N
| ﬁ ) " HH " L) Hv n n w ” '
W 0 1-12 1-12 1-12 '
B " 10 1-12 1-12 1-12 ")
15 1-12 1-12 1-12 -
s TS 20 1-12 1-12 1-12 .
MO 30 1-12 1-12 1-12 v
Pl 40 1-12 1-12 1-12 ;
o 45 1-12 1-12 1-12 *.
N 50 1-12 1-12 1-12 3
A 60 1-12 1-12 1-12 ’y
M 70 1-12 1-12 1-12 2
=i 75 1-12 1-12 1-12 :
S 80 1-12 1-12 1-12
R 90 1-12 1-12 1-12
AR 100 1-12 1-12 1-12 ]
e 105 1-12 1-12 1-12 R
e 110 1-12 1-12 1-12 N
' 120 1-12 1-12 1-12 W
u 130 1-12 1-12 1-12
% 135 1-12 1-12 1-12
b- {2 140 1-12 1-12 1-12 !
S 150 1-12 1-12 1-12 g
ORI 160 1-12 1-12 1-12 ;
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' Compact Range Experimental Data 1984
T Scale factor = Elevation angle = 0 degrees _H
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W (o
et ASPECT (Deg) POLARIZATION -
" HH " *HV " "vv "
gt 0 1.5-12 1-12 1-12 g}
oy 10 1.5-12 1-12 NULL
;‘i‘ 15 6-12 1-12 1-12
ey 20 1.5-12 1-12 NULL .
kY 25 6-12 NULL NULL E%
AR 30 1.5-12 1-12 1-12
35 6-12 NULL NULL
. 40 1.5-12 1-12 NULL -
¥) i 45 1.5-12 1-12 1-12 [+
2 50 1.5-12 1-12 NULL i
Yoy 55 6-12 NULL NULL
S 60 1.5-12 1-12 1-12 -
o 65 6-12 NULL NULL d
. 70 1.5-12 1-12 NULL u
" 75 6-12 1-12 1-12
A% 80 1.5-12 1-12 NULL
b 1 90 1.5-12 1-12 1-12 ’C:-
[ 95 6-12 NULL NULL T
o 100 1.5-12 1-12 NULL
" 105 6-12 1-12 1-12
Y 110 1.5-12 1-12 NULL
115 6-12 NULL NULL i
W 120 1.5-12 1-12 1-12 =
i 125 6-12 NULL NULL
) 130 1.5-12 1-12 NULL |
dey 135 6-12 1-12 1-12 NG
;- 140 1.5-12 1-12 NULL b
W 145 6-12 NULL NULL
150 1.5-12 1-12 1-12 )
J 155 6-12 NULL NULL
e 160 1.5-12 1-12 NULL &
b 165 6-12 1-12 1-12
Ay 170 1.5-12 1-12 NULL
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l‘:‘l\ y
J%l’&.!
P &
‘\‘,: 3 '.\k!l
iy
E: ) X
R | - 3
ol Figure 12: 747 Low-Frequency Data Base Map
e =
o
g ¥
B

» S w

T L L L o 2 R LA e T e T
,1![\ ‘. '1 x "\¢ ‘A', .h\' ‘."(

&)



o WO L e L — w

’

e

All Aircraft

The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984
Elevation angle =« 0 degrees

w5y Ak

HIGH FREQUENCY FORMATTED DATA BASE (GHzZ)

SPECT (Deg) POLARIZATION . .
E A P ( g L] HH L " HV " W
* 0 18-35 NULL 18-35
15 18-35 NULL 18-35
0y 30 18-35 NULL 18-35
45 18-35 NULL 18-35
*l‘.
d
b

Figure 13: High-Frequency Data Base Map
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2.4 Data Scaling

Fy

MATS

In order to obtain data in the resonance region of the commercial aircraft used

in the simulation study, the interrogation frequencies lie in the HF band. Since the

measurement of low-error backscatted radar signatures of such large bodies in this

b

frequency range would require facilities that do not exist, the common practice of

v

data scaling was utilized. Using the scaling properties of electromagnetic waves,

model aircraft coated with conducting paint can be used to represent the full-scale

o aircraft. Aslong as the wavelength is on the order of the model size, i.e., resonance
R

v
> region, the scale model provides a very close representation of the true full-scale
E: backscattered signature. When scaling methods are employed, care must be taken
(s

to make sure the model adequately represents the features of interest. For exam-

ple, when the wavelength becomes very small compared to the overall aircraft size,

B

,c;:? . smaller features on the aircraft start to resonate and scatter such as engine inlets,
Y

fot, . oy . . g .

:4::. % cockpit cavities, and other fine grain variation on the aircraft. If these features are
dt!
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:% not carefully represented on the scale models, the scale model no longer provides ; ::
) ¢
Y
.:'. \ an accurate representation of the true backscattered signature. For near resonance i "
,:“. region (i.e., where the wavelength is almost as large as the aircraft’s largest di- =W
t &
o~ mension) the model can be a rough representation of the target, and still provide :: 4
) w0
s good measurements of the true backscattered radar signature. The model sizes
- )Y
;:':. used for the measurements ranged from scale factors of 1:130 to 1:200. A photo of N
W ‘:
:::' the models used in the measurement process is shown in Figure 14. S
LOw ‘ .y
'*. :q?l i
'*:: The scaling process is defined by multiplying the amplitude and dividing the )
n frequency by the model’s scale factor (SF). The phase measurement is unaflected ozi N
3 ALY Y
'—"N > %
0 by the scaling process. ,:‘
oy -
S . N0
o That is: g -i
g -
" Fy=f,/SF (2.2) 0%
- [
-::f: T
= A(F,) = a(fu)* SF (2.3) ' X
D )
A L
_ .1,: O(Fs) = 6(fu) (2'4) v
. .I" V'j t
= . y e
’ ~ where the entries on the left side of the equality represent the full-scaled quantities
) £
) . . .
o of frequency (F,), amplitude (A), and phase (©). And the entries on the right a ;:
o ;
'_::: side of the equality represent the unscaled measured model quantities of frequency o t
" " 1
= . < e,
-.r (fu), amplitude (a), and phase (). < n
! The unscaled aircraft measured data, ranges between 1 and 12 GHz for the R
.:__- '-J ‘r.-
Y3 low-frequency data base and 18 to 36 GHz for the high-frequency data base. '
f:'- .-' K
v Appling the scaling relationship for frequency, the resulting net usable common :L) pt
e
v bandwidths for both low and high-frequency data base are: 7.7 to 60 MHz (Low- .
-, s
_:_, Frequency Database) and 138.5 to 175 MHz (High-Frequency Database). : ;
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IRy Figure 15 illustrates the three electromagnetic regions; Rayliegh, resonance,
::' ' and optical, and where the two scaled frequency bands are categorized. The figure
é shows that all the available data is not quite categorized as resonance region data.
{ -: Most of the low-frequency data base is categorized as near-resonance, and the high
o ‘ frequency data base lies in the optical region.
i :- Since the data base contains unscaled data, the frequency selection and scaling
': - A routines are implemented in the computer simulation program. Frequency samples
o from one to the maximum number of frequency samples shown in Table 1 are
:: ?‘ available to choose from. Since frequency samples can be chosen that are not
:" - represented by scaled data points; an interpolation algorithm using a Hamming
t?. 2 window weighting routine is implemented to create the desired frequency sample.
-, The interpolation window is 100 MHz wide (unscaled) and centered at the desired
iw ¥ frequency sample. After the sample frequency is calculated, it is then scaled to
: . the format of decibel relative to one square meter (dBm?). The equations for the
frequency interpolation are described in detail in [21]. In Figures 16 through 18,

e ::E: some sample data plots are shown illustrating the calibration processes described
0 in the preceding sections.

i
/SRS
b
s

3

b KN
b)
R
Lt
-
1 -,2
“ L]
L
*
-
o‘ E
, P
\' . 19 ‘*
SN v
Y -~ A )
b f. C;
B \
§ [ %
X ‘0
I ;’.
jtat

-

2 T w,, . - - i ) et .-
S0 geta{ NN o e Ca R ‘
v, LR IE M MO VLA s, X ’V_‘,q‘». KUK ,}.l._ AR NS ,.. &

5%
-
=
[
+
e
o
-




oy Table 1: Specifications of Data Bases .

,.
a)

a;,%a Low-Frequency Data Base
A b ;‘

f:“ Frequency formatted data strings from 1 to 12 GHz P ;
Wt '

Availible polarizations:
DU
t‘ Transmit Horizontal, Receive Horizontal (HH)
-«
iyl Transmit Vertical, Receive Vertical (VV)

Transmit Horizontal, Receive Vertical (VH)

s 244 A4

l“". eqe . ey . X
é:':: Availible Azimuth angles @ Elevation = 0°: '
) -‘;‘ t
NN, 0° to 180° by 10° and 15° increments !

- -
-
Eh
—

Common aircraft bandwidth:

b ~ 7.6 - 60 MHz “Scaled” % X
.
s Maximum number of usable frequencies: 209 T
.."~ i

) i‘_‘ High-Frequency Data Base :,< :
‘E Frequency formatted data strings from 18 to 35 GHz :
;".;),_: Availible polarizations: E :;
E:.. Transmit Horizontal, Receive Horizontal (HH) ;

Transmit Vertical, Receive Vertical (VV)

-

"..

Rz
EIDE Rl

Yt
' Availible Azimuth angles @ Elevation = 0°: 3 )
e N N
"5 ‘
_.r.'} 0°, 15°, 30°, 45° only :g
Jruer o
ey Common aircraft bandwidth: h ¢
139 - 175 MHz “Scaled” -
|;,“l 1'-*_
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' TARGET TYPE
v SATELLITES 2
' FIGHTERS W
X 1000 BOMBERS BAND| RADAR TYPE
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; . Rayleigh MF v
K- v 100}
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Py Rayleigh Region:  Scattered fields are descripted of the Volume of the target. B
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‘ Resonance Region: Scattered fields are descripted of the Surface Currents i
]
& that are in both the Lit and Shadow regions. &‘
X Optical Region: Scattered fields are descripted of the Principal f}_‘
o
N Curvatures of the Specular Points.
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w Figure 15: Electromagnetic Regions: Rayliegh, Resonance, and Optical .
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CHAPTER III

TARGET CLASSIFICATION TECHNIQUES

3.1 Introduction

The basic process of target classification is shown in Figure 1. The process
defines a measurement system that gathers information on a target, and passes the
information to a feature extractor. The feature extractor selects feature vectors
(vectors derived from the information), and passes the feature vectors to the classi-
fier. Finally the classifier, using “known” feature vectors to identify the extracted
feature vectors, classifies the target.

For the Radar Target Identification problem of classifying aircraft the mea-
surement system may consists of a low-frequency radar that provides initial search
and resonance frequency data (which has been shown to provide good feature vec-
tors for target identification [1,13]), and a high-frequency high-resolution radar to
provide accurate information on bearing, speed, and range. The feature extractor
may extract all or part of the information obtained by the measurement system.
For example, the low-frequency measurement may be processed by the feature ex-
tractor to remove background clutter, doppler shift, and path length phase shift,
to become the measured noisy “unknown target” feature vector. The classifier,
using a predetermined identification algorithm, then compares the noisy feature
vecter to the selected catalog of low-error “known target” feature vectors for target

identification. The target would be identified as a known member of the selected
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Figure 19: Basic Process of Targei Classification

catalog, or a target belonging to some uncatalogued aircrait. Additionally, the
data from the high-frequency radar may be used to tell the classifier to select a
subsector of the feature vectors from the known target low-error data base. For
example, a subsector might contain only feature vectors that have speeds at or
faster than the target speed measured and aspect angles in the range of the bear-
ing angle measured. The problem of determing whether an observed target is not
a member of a selected set of target feature vectors has been discussed in [12] and

will not be presented in this material.

3.2 Target Feature Extractor

The results presented in this document are from a simulation program called
the OSU Radar System Simulation and Evaluation (RSSE) computer program [20].
This computer program was developed to implement the various processes de-
scribed above. The RSSE computer program simulates the measurement systems
of six different “polarization-oriented” monostatic radars. The RSSE feature ex-
tractor processes the six radars types to derive the various feature vectors used by

the classifier for the RTI process. The six simulated monostatic radars are:

27




e LINEAR POLARIZED RADARS

1) Transmitting Horizontal, Receiving Horizontal (HH)
2) Transmitting Vertical, Receiving Vertical {(VV)

3) Transmitting Horizontal, Receiving Vertical (HV)
¢ CIRCULAR POLARIZED RADARS

4) Transmitting Right Circular, Receiving Right Circular (RR)
5) Transmitting Left Circular, Receiving Left Circular (LL)

6) Transmitting Right Circular, Receiving Left Circular (RL)

The simulated radars provide the dominant far-field complex backscattered
coefficients: crg;{, &‘35, &‘3;;, &g;. 5?5, and 63;; 1 Where the complex
backscattered coefficient & is related to the Radar Cross Section (RCS) coefficient,

o, and its associated phase, v, as follows:
&= oet¥ (3.1)

The three linearly polarized complex RCS coefficients 6y g, évv, and sy g,
are quantities measured on the OSU compact range (see section 2.2). The other
three backscattered coeflicients (i.e., the circular polarized backscattered coeffi-
cients GpR, 611, and Gry ) were synthesized by using the three linearly polarized

backscattered coefficients in the following polarization transformations:
- —E _ 1] 1 - s
VorL = V4 Er =, [./dvv - \/"HH] - JVovH (3.2)
t

Bs

VAll subsequent backscattered coefficients, 25, will suppresses the superscript #5 for ease of

notation.
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e Vorg = % [\/fmﬂ - \/&vv] - JVovH (3.3) )

i

l.‘ l-’ L
R

s‘ . ﬁ:ﬁ:%j[\/&V'V‘*‘\/&HH] (3.4)

Note that the quantity, v/&, provides a range independent feature for RTI

~ applications. The derivation of the above polarization transformations can be
A
S . .
':Qé o found in Appendix A.
Q’q ;I}
3.3 Feature Vectors
"u" -?
WO
'_f*;} . The feature vectors created by the feature extractor are represented by vari-
- '& ous linear and non-linear combinations of the six backscattered coefficients. The
L : .
e feature vectors are grouped into two categories: linear polarization radar feature
D : -
LN vectors and circular polarization radar feature vectors. The feature vectors, usu-
o, ally comprised of multi-frequency data samples, are shown in Tables 2 through 6
s ! for both the linear and circular polarized categories. These tables show the var-
L,
:: T ious combinations of the backscattered coefficients in the multi-frequency sample
Y e
"':.: format. The backscattered coefficient has been changed to a voltage quantity by
‘.2 E taking the principle root of the complex coeflicient. The various feature vectors
N
| listed in the tables have properties uniquely associated with them. For instance,
. T
\ - the circular polarization category of feature vectors tend to be less sensitive to
f - changes in the roll angle of symmetric bodies. For aircraft, especially in the nose-
:::: on and tail-on aspect angles, a change in roll angle will change the vertical and
::: - horizontal scattering components in both amplitude and phase while the circular
X~ S
v scattering components only undergo a change in phase. The ratio type feature
f '\: o vectors have the added advantage of a cancellation of multiplicative errors by the
.-_J
A division of scattering component. This cancellation property may lead to better
K
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N error statistics in actual practice over the non-ratio type feature vectors. A ratio

g type feature vector also eliminates the need of a reference for exact calibration of

CINTY . . “ e
"e:;' the backscattered coefficients, since the division process makes the feature vector

O a relative quantity instead of an exact quantity. Finally the polarization diverse

Fa )

feature vector (i.e., the concatenation feature vector type) has the property of

creating a large feature space with very few frequency samples.

3.4 Classification Algorithms

vc’wo
L& =%

Listings of a feature vector for many targets under various observations con-

2h )

r;: stitute a feature space. In the simulation study, a subset of the feature space of ’.»

:: low noise feature vectors linked to known target identities is defined as the catalog %

;: set. A set of feature vectors with unknown “noisy” target identities is referred to

.::::: as the test set. The classifier function is to take the feature vectors in the test i‘(
o

set and match them with feature vectors in the catalog set through the appropri-

ate use of a classification algorithm. The classification algorithms studied in this

¥
2O report consist of two non-parametric methods (i.e., no a priori probabilistic infor- h‘:
(1
:k mation) of target identification, one a Euclidean distance-metric, and the other a S
A
;)T cross-correlation routine. g
e N
:#1. 3.4.1 Euclidean Distance Metric Algorithm

:vf:’ :_‘*;
lr y - . . . . . . by

e The euclidean distance metric coeflicient is define by the following equation: -
?G Y =
o) dij= | Y |FVi(n) - FVj(n)| (3.5)

4 n=1 S

% where FV;(n) and FVj(n) are feature vectors containing N elements. The identity

h s
ﬁf_\.":: of the unknown " noisy test target feature vector FV; is chosen by choosing the =
(0] S
oW smallest d;; and classifying the ith unknown test target as the j”’ catalog target. &
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This method of classifying objects from a set of unknown samples is often reffered
to as the Nearest Neighbor (NN) decision rule. Since equation (3.5) utilizes feature
vectors containing both amplitude and phase information, it is referred to as the
coherent NN algorithm.

The coherent distance metric presented above is used to analyze data with
precise phase information obtained by a precise knowledge of range to a chosen
phase reference. This algorithm can be used to analyze data with other types of
phase data, such as relative phase between frequency samples, and will be discussed
in the final chapter of this report. For a detailed discussion of methods to obtain
radar phase measurements, the reader is reffered to {22]. For an amplitude-only
radar simulation, a non-coherent NN algorithm is used in place of the coherent
one. The non-coherent distance metric simply uses the magnitude of the elements

of the feature vectors and is written as:

N
dij = | & (FVin)l - [FYyn)])* (3.6)

n=1

3.4.2 Time Domain Cross Correlation (TDCC) Algorithm

Utilizing the multi-frequency nature of the simulated radar target interro-
gation and the discrete time frequency relationships, a synthesized discrete time
representation of the feature vectors can be obtained through the use of the Inverse
Discrete Fourier Transform (IDFT). For the six baseline polarization feature vec-
tors (i.e., FVHH pyVV o pyVH pyRR FV“’, and FVRL ) the time domain
representation provides a method of classification (i.e., cross correlation) that is
independent of time shifts in the time domain or common phase reference in the

frequency domain. This independence of a common phase reference between the
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" L] P r
Y Dy
:: test and catalog targets is a desirable feature but the cost or penalty is the pro- .j:* !
1y [
e cessing time required by the IDFT. -
Fre. For feature vectors utilizing non-linear combinations of the six baseline polar- =
s HH ppVv RR -
‘S izations (ex. —“VT' ;“LH'H LLZ—[ ect ...), TDCC no longer represents a cor- j-;q

X u
I . . ‘e

relation between linear time shifted test and catalog radar signatures. Although

j:i , the time domain cross correlation is still a valid procedure, the loss of the linear @ ]
o time shift property leads us to use the more robust coherent NN algorithm for the " j
Al
o examination of the non-linear combinational feature vector types. g
» The normalized cross-corralation coeflicient is written as: n, *
'.;::.- DIFT TV F V‘
by cij(k) = (3.7) %
O \/ S 1FVin)® ,/ |Fv; (n)[* -
CA;
';::f. where » denotes complex conjugation. The identification decision rule is to choose 2
Ny
.0 the largest c;;(k), thus classifying the ith unknown test target as the j‘h known

\
o

catalog target. Although the TDCC method works with as few as 2 frequency

.
.

e samples [23], a small number of frequency samples leads to poor resolution and 3

P -

Yt poor classification results (see Section 5.4). *

The equations for both the NN and TDCC algorithms described above are

-
N

A
=

4

thoroughly presented and derived in {15].
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o s Table 2: Linear Polarized Feature Vectors Types

LY
TN
Y&: i Transmit Horizontal, Receive Horizontal feature vector:

s

-
v

FVHH_ (\/511}1(!1 WWonH(f2) \/51”!(’”))

2

Ky A
L )
vy

Transmit Vertical , Receive Vertical feature vector:

FVVVZ (v/&l/"(.fl )»\/&VV(IZ)v M) \/&VVTIV))

.-’
5
&

&

13

1Y . . , . ,

ARy Transmit Vertical , Receive Horizontal feature vector:

e ﬁ FVVH=(\ov T VavaTa), \/&VH(IN))

e &3 Linear Polarization Diverse Concatenation feature vector:

FVOAT=(\ay gURWevv (I WevaU) VERRRDWEvv i wWeva).
7;.3 F VerrUNWEvv N WEvRETN))

Linear Polarization Diverse Complez Sum feature vector:

e = FVOS=(Voua(+Vavvm+VevaUn, VerrUD+Vavvi+Veva(fz). -
I VEHRUN+VEvv N +VEvR(TN))

-
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> Table 3: Circular Polarized Feature Vectors Types

‘(:." .o

-
L]
SE |

i

:::Y:‘. Transmit Left Circular , Receive Left Circular feature vector: ]
)
n::‘ <4
R FVEL=( /oL [(fWeELL(f2) - VoL TN) ﬁ
/ \'- Transmit Right Circular , Receive Right Circular feature vector: :
R FVRR=(\/GRr() /e RRU2). *» VERRUN)) :
! =\VoRrR(1):WORRf2), "+ VIRR(IN) ﬁ .
\n‘b ol
).-1'.\ Transmit Right Circular , Receive Left Circular feature vector: e g
1:\-: = t
oy FVRL=(\/zpi(R).VZRL(F2). ~ VFRLUN)) i
o .
f:' Circular Polarization Diverse Concatenation feature vector: o :

L) .
KT . _ . . "o
vy FVOAT=( /o1 (R)ZRRUD WA RLIA), VELL(R)WERR()WERLITD), :
j. \/&LL(fN)’\/&RR(fN)q,/&RL(fN)) %
:.p.
e .
22‘ Circular Polarization Diverse Complez Sum feature vector: g; ¢
K FVOS=(\Er (M +VerRRUD+VERLIN, VEr1(7)+VERRU)+VERL(T2): F |
D) L,
o VELLUN+VERRUN)+VERLTN)) ")
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Table 4: Linear Polarization RATIO Feature Vectors Types

i
¥
88 _ (egu() Vogplf) 1&&'&(@)
) FVW = s ety =

Vevv(f1) Vévy(f) Vevv(fn)
-
] T :éfmw, G (fz),___,:@ 7))

evH(f) Vévalf) vH(fN)

4
R vy

FVHH =

vovvif) vevv(fa) \/5vv(fN))
Verr(h) Veru(f2)' Vega(In)

(
(
(
FvVi - (VEEd) vanw( Vevln))
(
(

Vovah) Veve(R)' O VevaUn)

Vavath) vova(?) . VevhaUN)
eun(H) Voguf) ’m)

ovp(fi) vova(fs) %&vé(f&)
vielf)) Vevv(f) c'fvv(fN))

—

VH
FVHH

VH
FVvvv
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Table 5: Circular Polarization RATIO Feature Vectors Types o

FVvFE (\/omm VaLLf) m(m))
VERrRUN  Vorr(2) e RRUN)
FVv RE =( VoLLf) Verf) | ”LL(fN))
Verr(1)Y Vérp(f2)’ '\/URL(fN)
ViR (3[0[;3“1_) 'relf2) . \/PRRU ))
Ver(h) ' Veri(f2)' T VerLLUfn)
AR erplf1) (f2) FrRUN)
VEL = %/__EL
F ( 6ri(f1)’ Vorr(f2)' ' 5RLUN))
FvEt - <\/ MR anwm)
VorLpf) VerL(h)' VerLlfn)
FVERE = (\/ rL(f)) Vorilly) | \/"RLUN))
VeRR(f1) VERR(f2)' ' /eRR(IN)
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5; Table 6: Azial Ratio (AR) Feature Vectors Types

L2200

Transmitting Right Circular Polarization
RAR= C:’ d ‘:’
IVoRL |+J§URR|

FVRAR_(RAR(f,),RAR(f;), RAR(fN))

o

| 2.0

Transmitting Left ('trcular Polarization

n LaR=YELLIZIVE
Vorrl+IVoRLl

M FVLAR_(LAR(f1),LAR(f3), LAR(fN))

¥ Concatenation of Axial Ratio Types

N FVAR-CAT_(RAR(f,),RAR(f;), RAR(fN ), LAR(f1),.LAR(f3), LAR(fN))

E-.-
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CHAPTER IV L2

EXPERIMENTAL CONSIDERATIONS

4.1 Introduction

In this chapter, the various experimental processes and performance specifica-
tions of the RSSE [20] computer program are described. This includes a discussion

of: how the noise model injects error into the test targets feature vectors, the cal-

I RS 25 T

culation of average feature vector signal power, and the statistical technique for
estimating the probability of misclassification. “~

Figure 20 shows a flowchart illustrating the basic processing steps for the

target identification code contained in the RSSE computer program. The flow i
chart begins with accessing the database files that contain the multi-frequency ' t
radar signatures at various aspect angles and the three polarization types. A4;(ft) .: :
denotes the amplitude data of the k" frequency sample of tie jh target, and

6;( fi) denotes the phase component of the kth frequency sample of the j“‘ target. E
After the target data bases have been accessed and the scaling routines applied, two :.g,:
data sets of feature vectors are created through linear or non-linear combinations "
of the linear polarized or synthesized circular polarized backscattered coefficients. §
The two data sets are called the test and catalog data sets, and the test set feature .
vectors are corrupted with noise. To create the noisy test set feature vectors, the g
low-error cross-sectional signatures of the data bases (i.e., the linear and circular =

polarization components /oy, vVovv, VOVH, VORR. VoLL, and ogL )

38

. t'L

P

! F

'

Wt oty w W, LA S A P . TR s T o B e y o« o e v . o g - -
2T e A g R R L R LA S R SR AL TR Y Rt S S TN g 17
I b . BN AR M NS 8 " Lnn d. <o "“’ 0.5 a "("'. oS ""\ (N

o
‘I‘q’l.

€ ‘fl,!’ v'! . ::

-
L]
PN e




- ek el ok dad ol s A8 L4 L. Loa aa L a-a

e

Dats Base l
| At |

- ] fo=fu/SF 3
. L_.@ AL) = AMfa)o SF oo Scaling

See Section 2.4 J 0) = fe) S;S—;:l_ion 24 l

?,’

[s

~ 20

" Calcusltion of Noise Free Signal Power I lgnlru-lhon of Noise Free Signal Power |
- ; = A X

o' i LHIN ‘/"("L Alhakes T A

:!’: e (Sex Tables 7 - 11) AU = L) 459,00 Elp— e Tablea7- iy

o

c' |7 T Yrsert Notse ] & = 1,2,..., K frequencies

\j ____l_ngrt_N_ug____] [ Feature Vector Formation J

L%

i=12, ..., [ targets T T -
|‘ U+ Ny 4 AQ + Ny | [ 7 See Tubles 2.6 J

J=1.2,..., 3 targets

I Feature Veclor Formation ' [:C:;logSet
o See Tables 2.6 J v,
h
A
"
[ Ten Sev |
foore |

" L " See Section 34 _ )
hig) - Te-aa
'\; -7 Te-a -~
| Neunl’Nﬁghbor J Cross Correlation 7
- <~ DIFT(*V Fv?
! .- ‘\\ cylk) = i—--.i_ N.ll
: - . S~ \/ Pt AL LRV wRTA AT
R Non Coherent I L Coherent . Ve=r a=!
N 2 W — -
s 4,,:‘/5 (txvimy - |rr,m|)] ‘ a.,=‘/§ [ FViln) ~ Fiyn) |?
e LR} =
Cn - -
A\

¥l b e e et e e e e e e - Decision ’ __________________

g | Compile slfll‘.lu—lj
. Figure 20: RSSE Classification Flowchart

39

.- - -
.

N e e T AT 9 e
EIN ARV R R S N R A CE SR IR Mol




are corrupted with noise before the combination of components. On the other
hand, the catalog set (the low-error feature vector set) is created directly from
combinations of the low-error cross-sectional signatures of the databases. Once the
test set and catalog set of feature vectors are created, an identification algorithm
is chosen. The statistical analysis is obtained by ciassifying the test set feature
vectors several times with the catalog set feature vectors. Also, each experiment
in the analysis is statistically independent.

The following sections describe various parts of the Monte-Carlo system sim-
ulation techniques, such as the noise model, the calculation of signal power, and
the calculation of misci..-ification statistics. This detailed description serves the
reader in interpreting the experimental results of Chapter 5. In the first section,
the noise model is described along with the calculation of average signal power con-
tained in a feature vector. From this information the Signal to Noise ratio (S/N)
can be determired to serve the reader as a guide for the evaluation of various
identification techniques examined. In the second section, the statistical method
for estimating the probability of misclassification is presented along with the error

margins associated with the estimating technique.

4.2 Noise Model

The operating environment oi a rada. sys‘em contains many different types
of errors that can affect the radar target signature. The errors can consist of
unwanted atmospheric, cosmic, solar, man-made, and clutter (unwanied radar
echoes such as reflections from land, sea, rain, birds, and chaff) noise thai can
distort the desired radar return (additive noise types). Also, if the system is based
on an over the horizon target detection scheme, the radar signal can be distorted

through a variety ways, such as: ducting, focusing, differential absorption, Faraday
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;!' rotation, traveling ionospheric disturbances, and diurnal tilts in the ionosphere EE
! (multiplicative noise types). :;
Although a large part of these noise mechanisms can be calibrated or compen- _
5‘2 sated for in an operational system; errors will appear to some degree of distortion .,
. in the final calibrated radar return. As presented above, there are many factors '
.ﬁ which can affect the noise present in a radar return. Since computer modeling ‘
;J the different noise mechanisms that may occur in a given radar environment is E
% extremly difficult and commplex, a simple and direct method of introducine noise
2 into a low-error radar signature is used. '\
” One of the most commonly used methods of simulating a noisy radar envi- E
-‘; ronment is by the use of the additive white zero mean Gaussian noise model. The
” additive white zero mean Gaussian noise model provides uncorrelated statistics »
;_‘ between data samples (white), an unbiased corruption of the data samples (zero E
A mean), and a multi-source representation of the noisy environment (Gaussian). ;
! These noise properties exist in most real-world operational radar systems. For g
.
. if any correlated or biased noise statistics are found in the final calibrated radar tﬂ
' return, the radar system is ineflicient in its calibration routines and the noise level ?:
5 of the system is higher than it should be. In addition, the additive white Gaus- .,
& sian noise model has become a benchmark for the evaluation of the performance ;:
% of a wide variety of systems. A complete treatment of computer generation of a :'-
E’: pseudo-random quantity obeying Gaussian statistics within the limits of current ™
.
i} machine accuracy is given in [24]. ‘-
;: Implementing the additive white zero mean Gaussian noise model in the sim- '.
; ulation process, the backscattered radar signatures are contaminated by adding in- b
" phase and quadrature Gaussian noise components. This process is only applied to "
- the linear and circular backscatter components /oy g, vovv, VOVHs VORRs VOLL» _
. 41 3
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and /G g7, before a feature vector is created. An example of this process can be - E
4

described as follows:

St

Suppose the feature vector RR/LL is to be created for the radar target )
identification simulation. First, the low-error multi-frequency backscatter signa-

tures required to form the feature vector are obtained from the target databases.

The signatures are then scaled by the appropriate scale factors and sent to the oy
noise corruption routine. For the RR/LL feature vector, only the low-error syn- -
thesized backscattered components RR and LL in complex form would be present t-;
at this point. The additive white Gaussian noise is then applied by forming the N

vector sum: RR = RR + N, where N is the complex Gaussian noise vector and
RR is the noise corrupted complex radar return. Additionally, the vector sum:
LL = LL+ Njis needed to form the unknown target noise corrupted feature vector
FVRR/LL  The noise vector Ny and Ny are “independent” quantities generated

by forming the complex sum: .,

N = Np + JNg, (4.1) -

where j = /—1 and Np and Ny are the independent Gaussian distributed random
0 s
variables with zero mean and variance ¢2 (computed by methods described in [24]). X

The Np and Ng components are the in-plhase and quadrature deviates, where the .

power contained in the in-phase component Np is equal to that of the quadrature wu
component Ng. The average noise power is then given by : =
"~

N?* = N2 + N} =207 (4.2) ~

~

which is twice the variance. The noise phase 8y, is given by:

(4.3)
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*' Throughout the simulation study the noise power, 202, is specified in units
‘:». ' of decibels relative to one square meter (dBmz). Figure 21 is a representation
;‘.0 - of the contamination of noise onto a noise free vector. The figure illustrates the
3 . Gaussian distribution of both the in-phase and quadrature noise components, thus 7
.' !; corrupting the noise free data point to positions insided the shaded circular region. ..-:
: An expression for the signal to noise ratio can now be given as : 43:
- o
PR - 2 2y g A
" s_ (L+ra) # (44) 'r
VT (Npang) | ;
;;‘ y where 42 is the average signal power of the baseline polarization component used ,‘:::
l"' :f in creating the selected feature vector. Returning to the example of the RR/LL ﬁf
::a Q\&' feature vector, the average signal power would be calculated as: ¥
. , o 4
o ,, .-‘::1 N é NIAATE %
§ Ay = (45)
2 94 N ]
‘: : and the average signal to noise ratio is A'%%/Zaz. In Tables 7 through 11, a listing {
- - of the formulas used for calculation of average signal power for the various feature
X ! vectors are presented for clarity. :
S -. It is common practice to view system performance as a function of signal to :E::.
by noise ratio, where the signal power is based on the combined average power of :E:
_.,' .: all the members of the catalog set. In this report the plots of misclassification o
B T N
,:E percentages are specified versus noise power in decibels relative to one square f;:
E; f. meter, thus independent of target signal levels. Using this signal independent -

feature as a reference along with a listing of average power for each target in

-
>
EXAY

» the catalog and test sets, the misclassification performance curves can be better ':
¥ N
3
<
B e . . . by
:‘2 é understood. For example, the listing of each target's average power indicates n
% -
» 43 i
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N whether or not the catalog set contains a close listing of interclass targets (i.e., it

is unreasonable to place a target in a class where the average signal power of the

- 4 -
-

G

-

other target signatures are orders of magnitude greater). When a large difference

é E;: in magnitude exists between targets, the misclassification results tend to indicate
g‘""‘: | a poorer overall performance then a set of targets with closer magnitudes would
‘. y }q'\ provide. That is, the targets with smaller signal powers misclassify at lower noise
b
:‘;f - power levels then the larger targets, and the misclassification percentage numbers h
R & are bias to a higher level. The absolute reference of noise power also allows a fairer
:": :'j comparison of the different feature vector schemes. With this method the radar
A:.::“:'.: rf. designer can now identify the feature vectors that are the most resistant to noise
’_':h' g corruption; whereas the other method of specifing S/N tends to normalize this
: ¢ characteristic out of the misclassification curves. For example, if the specification
'\ :::: u of average signal power is not given, the S/N reference plots tend to imply that the
‘ - n classification performance results for a class of large cross sectional targets are the
N same for a class of small cross sectional targets at the same signal to noise level;

even though the smaller targets might be at a noise power level of 10 dB and the

LA
AN
rr 0

larger targets at a noise power level of 20 dB.

J g

: J' " 4.3 Statistical Method for Estimating the Probability of Misclassifica-

,}3 tion
e .
el . _ .

R, In the Radar Target Identification (RTI) simulation study, estimating the
oS :{_‘ probability of misclassification requires a number of independent experiments to
n\\n ~
._:'::f: . be performed to calculate the percent of misclassification. The statistical analysis
DU
* \ '.‘ . . . » . . 13

LD v is obtained by using a different random seed for generating the independent noise
’- o in each of the experiments performed. The misclassification percentage of a tar-
LAEN S
A . . . .

";s get is then calculated by counting the number of times the target was incorrectly

‘
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“:__,.‘ classified and dividing by the total number of independent experiments performed. i L
L)
" The average misclassification percentage is then calculated by adding all the in- - g
O dividual target misclassification percentages and dividing by the total number of ! E
i
:,.: targets. A ::i
o, Y
e In equation form, the statistical technique for calculating the average misclas- ' d
5 sification percentage may be represented as: 5
" YK
Y M !
' Pr= 3 T (4.6) .
A ST j=1 " ' 7ﬁ
~ x
®,
'ls. where: ';.q 'n
» n ;’3
& M is the number of signatures contained in the catalog set. ¢
KN g
. o
o m; is number of times test target j was incorrectly classified. o
A
?: n; is the number of independent classification experiments performed .
s .. . ’_.:
i\" on test target j. :{
"b oA
In any statistical analysis a margin of error is introduced, whenever a finite ﬁ
-}.
" number of independent experiment is performed. In the RTI simulation study the
_'.-: statistical analysis is obtained by a finite number of experiments. To analyze the ﬁ
zr
) margin of error involed in a statistical analysis the confidence interval [25] must be a
' K,
- given. The equation for the confidence interval for the RTI analysis is given as: B
.'-:f o
.- r*d
X
Po(1 — po) - 5"
Pg =p, —_— 4.7 :
E = Po T éa mn (4.7)
h‘ (
.
b where: ol
o
oo m is the number of targets. "
Coy ;
n  is the number of independent experiments.
po is the desired probability of error. :3
.

€a is such that:
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o
:\; a 1 €a ‘-l‘2
- =1-2 - -5d _
Heo)=1-5= = [T (48)

! where @ is the cumulative distribution function with zero mean of a standardized
o normal radom variable [25].
oy

For example, for a 90% confidence level that the misclassification level is 10%.
_F The margin of error, with five targets and one hundred experiments, is found to
. be:
>

a=1-09=10.1

5 .
4 P(fa)=1-~5 =10.95
5 £a = 1.65
‘ po = 10% = 0-1

o Pp = .14 165 203l

10% + 2.2%

o
1

Hence, for a 90% confidence interval that the misclassification level is 10%, the

- margin of error is + 2.2%.
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‘ Table 7: Average Power Calculations For Linear Polarized Feature Vectors Types

i

.

.“.

S

O] . , . .

o Transmit Horizontal, Receive Horizontal feature vector:

s

K ,‘iv:l(\/&inar(fi)[2
N

e Ay ="
e
B
R Transmit Vertical , Receive Vertical feature vector:
i N
R L [vevviz
'™ o - =
! : Al v=-— N
L)
- Transmit Vertical , Receive Horizontal feature vector:
I N, - 2
o L |vevati)
- I
r Avy = N
IS . . . .
P Concatenation and Complez Sum Linear Polarization Diverse feature vectors:
2" N 2 N 2 N 2
o2 - = =
o L |VerntAI[ + & [Vavv il + & |Veva(f|
- _ 1= 1= 1=
o Alpp = 3N
v
B ,.l
s
,I
o,
L
. ‘\‘
g
)
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o Table 8: Average Power Calculations For Circular Polarized Feature Vectors 3
E Types T
,!';" . N
SR ‘
\: J :'..1 .‘
:{’ ; - t
Transmit Left Circular , Receive Left Circular feature vector:
O )
Ry & E A
SR SN VoLl "
KR 9 oY £
' A" = - - ':
8 1L N '
) d
RN h )
- v
:E' Transmit Right (‘ircular , Receive Right Circular feature vector: o
SRR 0
5 N ) , y
)':d " N - 2 2
L, . " SJ»"RR”:" ):
T g 2 1=
“" ﬁ ARR - N L)
[ ) -
g. Transmit Right C'ircular , Receive Left Circular feature vector: ';
e :
‘ s
g 2 |VERL(T) l /o
et A2 — 1=1 (1
J E RL N B
o ;
m) % Concatenation and C'ompler Sum Circular Polarization Diverse feature vectors: :
»,
K [ X
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2 Table 9: Average Power Calculations For Linear Polarization RATIQ Feature
w? Vectors Types
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& <N

N 2 N 2
R , El,vf’ﬂn(fi)’ +‘El|\/¢"vv(f¢) ;
Aa. —_ 1= o 1= . o - ¥
Kl H <
R L 2N

s ﬁl wmunlﬁg_f%, Vavatl|
== IV

2 Ay g
' L
e VH ¥
i d

2 A2... same as A%, above.

NS & Vavv | + _'zg Vovad|

N 2 = "
ey Avy = TN 4
S0
"

J . 42, A2 b g
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Table 11: Average Power Calculations For Arial Ratio (AR) Feature Vectors = :‘
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CHAPTER V

MONTE CARLO SIMULATION RESULTS

5.1 Introduction

This chapter presents the experimental results obtained through the Radar
System Simulation and Evaluation (RSSE) computer study. The results are pre-
sented in five sections, where each section examines certain aspects of the radar
identification techniques presented in Chapter 3 applied to the polarization diverse
aircraft data base.

In Section two, a brief description of the misclassification curves are presented.
In Section three, the aircraft data base is examined in two specific ways. These

are:

1. Misclassification performance versus the number of frequencies.

2. Misclassification performance versus frequency bandwidth.

In Section four, misclassification performance versus classification algorithm
is examined. In Section five, tradeoffs between the available feature vectors listed
in Tables 2 - 6 are examined. Finally, in Section six, the examination of misclas-

sification performance versus enlarged azimuth angle sectors.

5.2 Interpretation of Misclassification Precentage Curves

In the following sections, the classification performance of certain radar types

is derived by the interpretation of the computer simulation misclassification curves,
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In order to help clarify the reader’s interpretation of the misclassification curves,
a brief discussion of terms and plot characteristics is deemed appropriate.

Each curve presented in this chapter is compiled by combining the multiple
output listings of the RSSE computer program for a given type of experiment.
One type of experiment for a RSSE computer run may be the misclassification
performance of the aircraft data base versus the number of frequencies. Another
tvpe of experiment may be the misclassification performance of the aircraft data
base versus bandwidth. In Figure 22 a typical output listing of a RSSE computer
run is shown. At the top of the listing, a single comment line stating the frequency
bandwidth and the number of frequencies used in the radar simulation. Next, a
cross-reference table mapping identification numbers to test and catalog targets at
a given aspect angle, feature vector type, and average power (see Tables 2 - 6 for
the feature vector types and Tables 7 - 11 for the average power calculations). For
example, in the list’ 1g shown the test target ID#1 correspondes to plane #1 at
a aspect angle of 0° azimuth and 0° elevation. The feature vector is the HH type
(i.e., FVAH) and the average power contained in the 10 frequency sample feature
vector is 11.15 d Bm?.

The next portion of the output listing contains the confusion matrices at
various noise power levels. In the confusion matrix, the elements in the top row
correspond to the members of the catalog set and the elements in the first column
correspond to the members of the test set. The numbers inside the confusion
matrix represent the number of times a test target was classified as a member
of the catalog set. The identification algorithm used in this example is the Non-
coherent nearest neighbor distance metric. As shown in Figure 23, the 10 dBm?
noise power level confusion matrix, test target #1 was classified eighty four times

as catalog target #1, one time as catalog target #2, five times as catalog target
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S _
::. , L 140.0 - 170.0 mHz 10 Prequencies
:
et
) ! TEST TARGET INDEX MAPPING

iy b§-) TARGET AZ (Deg) EL TYPE  AVG POWER (DB_SM)
e 1 PLANE § 1 0 0 HHP 11.15
o S 2 PLANE & 2 0 0 AHP 11.80
A 3 PLANE § 3 0 0 HHP 15.93
sl B 4 PLANE # 4 0 0 HEP 11.34
‘. S  PLANE § S 0 0 RHP 19.96

gk » CATALOG TARGET INDEX MAPPING
o ID TARGET AZ (Deg) EL TYPE  AVG POWER (DB_SM)
N ‘ 1 PLANE § 1 0 BHP 1.1 ~
0 3 2 PLANE § 2 0 0 BHP 11.80
¢ ’ 3 PLANE & 3 0 0 BHP 15.93
4  PLANE § 4 0 0 HHP 11.3¢
I 5 PLANE § 5 0 0 BHP 19.96
P-a ‘F:
e
&
Boes 7
N ‘
& Figure 22: Example; Output Header of a RSSE Computer Run
“.
‘:’ #3, ten times as catalog target #4, and no times as catalog target #5. A total of
RS
oy u 100 independent experiments were performed (i.e.,84 +1 + 5 + 10), and these 100
N experiments represent the number of times the feature vector was contaminated
NI o o , . ,
PN by the additive multivariate white zero mean Gaussian noise model.

For the case shown in Figures 22 and 23, the members of the test and catalog

il
m

set are identical. Therefore, the entries along the main diagonal represent the

S
%-
:':: P number of times the target was correctly classified while the other entries (i.e., off
) the main diagonal) represent the misclassification errors. At the right side of
BN

- the confusion matrix a column of misclassification statistics for each test target

feature vector are listed. At the bottom of the confusion matrix the average of

- .‘?v ot
"I

)
L]
™ these numbers is listed as the average misclassification percentage, and this is the
OO number plotted in the misclassification performance curves.
"y
o - A sample plot of various misclassification performance curves is shown in
..“ .
)

N
'




12
o
.":S
¥ 140.0 -~ 170.0 MHz 10 Frequencies
i
“%r Nearest Neighbor Algorithm - vector "NON-COHERENT" distance metric
Classification Table for Noise power = 10.00 pBsM
5 TTNCTS 1 2 3 4 5 A MIS-CLASS
K>
:“ ' 1 84 1 S 10 0 16.00
""f‘ 2 4 86 3 7 0 14.00
< 3 0 0 100 0 0 0.00
iy
R .::: 4 13 9 5 73 0 27.00
prX s © o 0 o 100 0.00
.’_",l
L] 'I
..
w v Average mis-classification percentage : 11.40 §
v
$;$ Mis-classification percentage is based on the test targets name.
)
o
L2 Figure 23: Example; RSSE Confusion Matrix Computer Listing
o
-t
.’ . . . .
N Figure 24. The solid curve represents the result from the previously discussed
f
e
f . . I3 . .
™ confusion matrix. Every plot shown in this report will have the same format as
a0 shown in Figure 24. A header of information is provided at the top left hand corner
AN - - . .
\:-\ of every plot explaining the characteristics of the radar simulation performed. The
.,**
LN . .
Doy header is comprised as follows:
J
LI
[} . . . .
W Line 1.  Data Base Type. (i.e., aircraft, ships, ect..)
i
¥ . -
;,:’. Line 2.  Feature Vector Type. (See Tables 2 - 6)
o
Y
Lin= 3.  Identification algorithm. Non-coherent,coherent nearest neighbor
8
Voo . . .
:‘-f',;.{ or time domain cross correlation.
e . : . : .
(- Line 4.  Aspect Angle. Azimuth, elevation, and roll orientation.
h
Line 5.  Start and Stop frequencies. The frequency samples used are evenly
’l . . .
N spaced samples including the start and stop frequencies.
)
L)
') » . .
:... Line 6.  Number of {frequencies.
‘:'o (
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o Line 7. Number of test and catalog targets. %
113 K 4]
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Line 8.  Number of independent experiments performed.

B Line 9.  90% confidence interval at the 10% misclassification level. e
h ;}‘ M M [ " "
i o If any of the parameters in the header block is replaced by the word “key”, e

‘ then this parameter is the tradeoff parameter of a multi-curve misclassification

e D

S AN | "
lot. Each curve in the misclassification plot is identified in the key located at v
- p p A

o e . ) [}
h 3 the bottom of the plot. The key will contain an identifing line type with a brief ',f
v explanation of what the line type represents. In the example misclassification plot 77
. \"‘ ‘.'..
] . . ¢ g . (XM
S shown in Figure 24, the key has a listing of two paraineters representing curves s::
J )
o . : . . . . "
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5.3 Number of Frequencies, and Bandwidth Study

This section presents a number of misclassification curves in order to examine
various bandwidths, and the number of frequency samples required within the
bandwidth, that provide optimum levels of classification performance.

Five frequency bands were chosen to examine the performance of the classifi-
cation parameters. The bands spanned the entire range of the usable data in the
data base and consisted of one 8 MHz band, three 30 MHz bands, and one 50 MHz
band. Four of these bands were created from the low-frequency aircraft data base,
and consisted of overlapping frequency bands that resulted in additional insight
on the aircraft behavior to the identification techniques employed. The four scaled
frequency bands from the low-frequency data base are: 8-16 MHz, 8-38 MHz, 30-60
MHz, and 8-58 MHz. The high-frequency 30 MHz band is 140-170 MHz.

From previous discussions, it is expected that the lower frequency data base
should provide good classification performance. Since the frequencies in the 8 - 58
MHz band are closer to the resonance region (see Figure 15), the radar signature
will tend to vary less as the aspect angle changes compared with that of higher {
frequencies in the 140 - 170 MHz band. In terms of scattering centers, at the
lower frequencies the spacing between two scattering centers is relatively small in
terms of wavelengths; therefore, the scattering mechanisins are less sensitive to
small changes in aspect. For example, the two source single plane phase inter-
ference equation, g;\"ﬁcos (0), shows that a higher frequency will produce a much

faster slope change versus aspect angle due to the i term. So for a complex tar-

B elinliond &

get (i.e., one with many scattering centers), a small change in aspect angle will
generally produce a greater change in the radar signatures at a higher frequency

then a lower one. Therefore, the lower frequency bands should be more reliable
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and should provide better overall classification performance.

In choosing the correct number of frequencies, the time - frequency - distance
relationships of electromagnetics can serve as a guideline of design. To illustrate
this concept Figure 25 shows a time domain representation of a fictious backscat-
tered response of a plane wave (impulse) traveling along the length of the aircraft.
If a receiver were positioned at the nose of the aircraft to receive the backscattered
energy. it would see the response from the nose as soon as the plane wave reached
the aircraft (i.e., at time #g). The response due to scattering at 25 meters down
the length of the aircraft would be seen at { 4+ 2¢; (i.e., the time it takes the wave
to travel down 25 meters, scatter and travel back to the nose of the aircraft), and
the end of the aircraft would be seen at {g+ 2{5. From the time-frequency-distance
relationship ALI = 2l, where [ is the length of the target, Shannon’s sampling

theorem requires that the frequency sampling rate A f satisfy Af < 31-

The five aircraft used in this simulation study have an average length of ap-
proximately 50 meters. This implies that the sampling rate has to be at least 3
MHz. So for bandwidth 8, 30, and 50 MHz, approximately 3, 10, and 17 evenly
spaced frequencies, respectively, are needed to represent the target signature and
meet Shannon’s criterion. However, since higher order mechanism do exists, such
as double diffraction, creeping wave, and the ringing associated with the resonance
condition, the time duration of the target’s signature tends to be increased beyond
the time it takes to traverse the physical length of the target (i.e., tg + 2¢5).

Examination of the transformed frequency samples to the time domain reveals
that the response of the aircraft scatterers typically die out before 3.5 transit

times across the overall length of the target. Therefore, the sampling rate becoimes

Af 7 5%
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to to + 2t to + 2t
333.3 n-sec
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Frequency/Time/Distance relationship for 3.5 transit lengths

Tec = —7 = 3.5% 50 = 175 meters

So for a bandwidth of:
8 MHz, need =~ 5 frequencies
30 MHz, need =~ 18 frequencies
50 MHz, need =~ 29 frequencies

Figure 25: Time Domain Plane Wave Backscattered Response
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Figures! 26 through 30 show a set of misclassification plots for the nose on
(i.e.. 0 degree azimuth) aspect angle. The five figures illustrate the misclassification
performance curves for each of the five bandwidth versus the number of frequencies
samples. The non-coherent distance metric was used in each of the plots and the
average signal power of the combined targets in the catalog set is identified on each
plot by the symbol “AP”. Note that the clustered breakaway point from the 0%
misclassification level starts at about 15 frequencies for the 30 MHz bandwidths.
If 15 frequencies are chosen, the time-frequency-distance relationship calculates a
length of 150 meters as the effective target length. This calculated length supports
the statement that the backscattered response typically dies out before 3.5 transit
times across the overall length of the targets.

Examination of the five plots simultanously, reveals that the 8 - 16 MHz band
provides the best classification performance versus noise power. The average signal
levels of the feature vector elements in this band are larger than those in the other
bands. For this reason the elements have a better noise immunity and thus provides
better classification performance. Further examination of the plots show that
when the number of frequencies do not meet the Shannon sampling criterion large
drops in classification nerformance can be expected. At 2 frequencies, the 8 MHz
bandwidth plot shows a 15 d B or more drop in noise immunity. When the sampling
rate is much more than the required Shannon rate, little or no improvement in
classification performance is gained while the cost and time required to process
the additional frequencies is increasesl.

I:: Figures 31 through 31, bar graphs are shown comparing the misclassifica-
tion pecformance at four different aspect angles at the 20 dBm? noise power level

wr ik T feegqrency case. Even though the 10 frequency case may not be fair

YAll remaining figures are located a* end of Chapter 5.
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% when comparing different size bandwidths (i.e., Shannon’s argument for minimnum
number of frequencies), it allows the radar designer to compare performance as a
. function of frequency samples. Ten frequencies were chosen because they provided
) good classification performance in all the examined bandwidths. The results show 3‘;
N "3

that the 8-16 MHz band also provides the best overall classification performance
g for the four aspect angle examined.
Another aspect which should be mentioned when comparing the performances

of the five bandwidths is the background clutter and noise characteristics across

e
| (TS el

the frequency bands. Before a final decision can be made on the best frequency

R

v band for radar target identification, a study on the background clutter and noise

g characteristics over the frequency bands of interest must be made. Once the back-

ground noise levels are found; the corresponding misclassification levels for each

:}. bandwidth can be found from the plots presented above, and the best performing
- bandwidth can be chosen.

. 5.4 Classification Algorithm Study

4

< In this section, the three identification algorithms available in the RSSE com-

; puter program are examined. The three algorithms are the non-coherent nearest
] neighbor, the coherent nearest neighbor, and the time domain cross correlation

;"E methods as discussed in Chapter 3. As with the first section of results, the per-

- formance of the identification algorithms are examined by the simulation results

;:é contained in the percent misclassification performance curves generated by the

- RSSE computer program.

- Figures 35 through 40 show the misclassification performance results for the

ESS three algorithm types in the 8-16 MHz and 8-38 MHz frequency bands. Each plot

; contains three curves of the HH feature vector type, and each curve represents one X
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> of the three algorithm types. Additionally, the plots show the misclassification ".
S performance levels of the algorithms at 2, 5, and 10 frequencies for the 8-16 MH:z -
: band in Figures 35, 36, and 37, respectively, and 5, 10, and 15 frequencies for the !
'::.'E'_) 8-38 MHz band in Figures 38, 39, and 40, respectively. In each case, at the 5% E{
f misclassification level, approximately a 6 dB improvement in noise immunity is
__ gained over the Non-coherent Nearest Neighbor algorithm by the Time Domain i \
,)EE Cross Correlation algorithm (TDCC), and another 3 to 5 d B improvement is gained -, !
2 over the TDCC algorithm by the Coherent Nearest Neighbor algorithm. The plots A
\: also reveal that an identification error rate as low as 5% can be achieved at a “2 ;
._:jz signal to noise ratio of about 0 dB when accurate intrinsic phase information is R ‘
',:fc, available (i.e., coherent nearest neighbor algorithm). This result shows that the é
f cost of using phase information is clearly worth the effort in both processing and :
::. measuring. A 10 d B improvement in noise immunity over the non-coherent method " i
ﬂ':' is a significant gain in classification performance. o

¥ While measuring the intrinsic phase of a target for coherent nearest neighbor ﬁ
:;:x: processing requires an extremly accurate knowledge of range to a target phase j ;
:: reference, the time domain cross correlation method has the property of range " f
‘; independence through the correlation process. Tradeoff such as the processing time !
gé; for the correlation process and the range resolution requirements for the coherent S

: nearest neighbor must be examined if both methods meet the desired classification R
N ‘ performance levels. =
e =
::': Aunother option for utilizing phase information, without the stringent range _
:; or process requirement, has been presented in earily works {16,17]. The method a '
‘- uses the coherent rearest neighbor algorithm but employs the use of the relative .
E; phase between the frequency samples instead of the intrinsic phase of the target. ‘3 ‘
‘J\ ..

X
-.,'
-

. 64

L c-

- a

. b
n":‘
(-'1

ML R R I Ty '.' gyt o < a " LN L | LA Lyt -r'tdd‘(--.r..{ o
ST IRA 4-.,-./‘ o -\.'. ,-.,J, ,\.{.\\ \'J‘ \- 5.?\ "h. &x,»-.)-.'f SN NN e '\,‘.)\ *.'




I

A'.‘: o

K ;;j The relative phase method is defined as :

o

Vgt |
. ! Wi=0;A - 01 A (5.1)
%

i

0"’:0 L%

:e.‘. ;é where 6; is the measured phase at wavelength A; andi=1,. .. N -1 (where
B

0'.!!

N = number of frequency samples). Equation (5.1) assumes that the range to the

=
5

EQ target between frequency interrogations differ by a small amount.

::3‘::‘ - While this method also avoids the processing time required by the TDCC
gt ﬂ method by utilizing the colherent nearest neighbor algorithm, the W; method of
Mg _,\ phase processing can present even poorer classification performance than process-
:‘;} h ing without any phase information at all (i.e., non-coherent nearest neighbor).
;%'a ﬁ This situation arises when the relative phase difference is small in value, the noise
5 N corruption will tend to blend the samples together in such a way that the level of
i \‘ *‘ classification performance is worse than the non-coherent processing method.

O]

5.5 Classification Results for Feature Vector Types

"

) 5.5.1 Introduction

--
S
i
o
P

In this section, the misclassification performance levels of the 26 feature vec-

tors available in the RSSE computer program are examined. As discussed in

o Chapter 3, various feature vector types provide properties that may be advan-

%
.:.
i

tagous to certain target identification situations. For example, the ratio feature

-
L]

vector types such as the FVHH/VYV g4 FYVV/HH have the property to cancel

n &
YOS
"r§ - out multiplicative type errors by virtue of the division of the backscattered coefhi-
I. L

cients. The circular polarized feature vectors tend to be insensitive to roll of the

¥
Pz

aircraft especially in the symmetric cases of nose-on and tail-on incident angles.

Ty G .. ) )

";}. 3 It must be remenbered the the characteristics mentioned above for the ratio

s

3 .s' - type and circular type feature vectors were not explicitly exploited in this report.
! ﬁ
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:: That is, a multiplicative noise model was not available nor was other aspects angles
b7
. that included roll angles other than O degrees. 5
h. A ;
. However, the tradeoff between the feature vector types is examined from the
I ‘
g . L. . . . ] . . \". .
:.; stand point of performance versus additive multivariant white Gassian noise. In < ,3;
A e
. . . .
) this tradeoff analysis of feature vector types, the performance is analyzed by keep-
W\ . . yeas A
' ing the feature space at a constant size and calculating the error probabilities by a E
O pairwise classification between all possible pairs formed by the five airplanes: Con-
pia I
e cord, DC10, 707, 727, and 747. Most of the performance curves presented in this -
A section are representative of the 8-16 MHz band, 10 sample frequencies, and the 8
A 5
';' coherent Nearest Neighbor distance metric. This combination was chosen because
A
o &
- it provided the highest immunity to additive noise. W
)
s ok
: 5.5.2 Linear Polarized Feature Vectors -
N R
" Figures 41 through 43 show curves representing misclassification results for
W -
A the three linear polarization types. The misclassification performance curves for i
5":: ry.- r
b the feature vectors FVHHE FyVV and FYVH | are plotted in Figures 41, 42, o
'.:- and 43, respectively. Four performance curves are plotted in each figure, each "’

-J representing one of four different radar illumination aspect angles. The aspects

Z
vl

are at 0%, 45°, 90°, and 180° azimuth, with 0° elevation and roll. In the KEY,

L] f-

7. . . . o >
Al beside each aspect entry, the average power contained in the catalog set is listed. :.
a0 -

Examination of the plots shows that the horizontal-horizontal feature vector,

N FyHH R

T . that consists of the backscattered radar returns of incident illumination
"-.;: parallel to the fuselage and the wings at low incident elevation angles, tend to L
\
.;-.. produce higher backscattered energy return than the vertical transmit-receive fea- -
\4 ture vector F1'V'Y. This property results in a higher noise immunity and better 'C:
;::: classification performiance levels. It is also noted that the signal to noise ratio. .
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between the 0% misclassification breakaway point is smaller for the VV feature

v B

vector type than for the HH feature vector type. This would tend to indicate that

! the VV feature vector type may have a better discrimination property that its
::: orthogonal counter part (i.e., the HH feature vector type). A close grouping of
= misclassification performance curves for both the HH and VV feature vector types
§ is encountered for the four different aspect angle examined. Misclassification levels
lower than 10% at signal to noise ratios of 0 dB are also achieved when accurate y
;;.l phase information is available. :
e The third plot (Figure 43), which represents the VH feature vector type, shows ;
- that the classification performance is highy aspect dependent. For the 0° and 180° .f
;3 aspect angles a large drop in classification performance is encountered. The cross- E
pol feature vector has the characteristic of a null backscattered radar return for -
,
";. symmetric objects. Symmetry is encountered at the 0° and 180° aircraft aspects; N

therefore, resulting in a low backscattered radar return for the VH polarization [

scheme. The VH feature vector type can always be expected to have a lower

backscattered signal return than the HH and VV feature vector types; unless, the h

[ 203

target's major axis is oriented along a 45° angle relative to the horizontal and
vertical polarizations. The 45° orientation would result in backscattered energy

returns comparable to the HH and VV radar types.

== R

For the linear polarization feature vector types the 90° azimuth angle tends
P yp g

to produce the best classification results in the all bandwidths studied. While

~

e .. .. . . . o
this is not surprizing, since at this aspect the large surface area of scattering

“q . . . . . .

;: produces a high energy return signal, earlier studies based on a signal to noise

A

ratio normalizatiop did not indicate this result.

.
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L4 5.5.3 Circular Polarized Feature Vectors o
g |
A
. o L

The next series of figures are the circular polarized feature vectors FVAR,

z_: FVLIL and FVRL, These feature vectors were found to have performance lev-

- )
% ::‘ els of classification very close to that of the Linear Co-polarized feature vectors ::‘;
"‘.\ (i.e., FVAH and FV'Y'Y). While the circular polarized radars at HF frequencies "
-\.“:&% do not exhibit any added advantage of clutter rejection over the linear polarized =
';: radars (they do in the microwave region). The circular polarized radars do have a :::;
'm. better aircraft roll independence especially in the head-on and tail-on aspect an- v ]
‘:i‘ gles. Because of the symmetry of a aircraft at nose-on and tail-on incidence, most ;:‘fl
E:E of the circular polarization backscattered responses from the co-polarized RR and .
:";: LL feature vectors types are the result of secondary and higher interaction effects h)
-:\: with the electromagnetic signal. For example, the first ordered scattered radar re- -
Eé- turn from an infinite plate perpendicular to the propagation direction of a incident ’
ot right circular wave is left circular, and the backscattered energy not be received i
: by a right circular transmitting antenna. §
.&:: Figures 44 and 45 show the performance curves for the circular co-polarized tE
f’)' feature vectors FVER and FVLE The curves, at tie same aspect angles shown -
.{. previously in the linear polarized feature vectors performance curves, exhibit clas- ®
o) sification performance levels very close to that of the co-polarized linear feature o

¥ i
~
B en

‘--" vectors. While the HH and VV linear feature vector types provide better clas-
. . . 7z
sification performance at the symmetric aspect angles of 0° and 180° than the By
' asymmetrical aspect angle of 5°°, the LL and RR circular feature vector types do )
L not. Because of the LL and RR feature vectors second order nature to symmetric &
.\,;: aircraft look angles, the 07 and 180° aspect angles misclassification performance o
N 5
ol ¢
2 ;., levels are below that of the 45 aspect angle. Note also that the 0° and 180° ™
a,
¥ J"'a
e
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performance curves in LL feature vector plot are almost identical to the 0° and
180° curves in the RR feature vector plot. This should be expected, since the
linear to circular polarization transformations for the LL and RR backscattered
coefficients become identical for any target positioned at a symmetric look angle
{see Appendix A).

The RL feature vector plot (Figure 46) shows that the performance curves still
hold levels of classification performance close to that of the co-polarized circular
feature vectors. The circular cross-pol feature vector (FVRL) maintains a good
grouping of performance curves versus the change in aspect as opposed to that of
the linear cross-pol feature vector (FVYH#) shown in Figure 43. At the 0° and
180" aspect angle, the RL backscattered signal return is now a first order effect
and dominates the other aspect angles in the region below the 5% misclassification

level.

5.5.4 Ratio Feature Vector Types

5.5.4.1 Linear Polarized Ratio Feature Vectors

The ratio feature vectors provided a varying degree of performance levels.
The performance for most of the ratio feature vector types has shown to be highly
dependent on the interrogation angle. Figures 47 through 52 show the misclas-
sification performance plots for the six possible ratio combinations of the linear
polarization backscattered components /g g, Vovv, and /oy g (see Table 4).
As with the previous data shown in this chapter, the plots illustrate a pairwise
classification of alike catalog and test sets containing five feature vectors (i.e.. one
for each of the five aircraft). Again, 100 experiment and the coherent NN distance
metric were used for the RTI simulation.

Comparing the six plots shows that the feature vector type VV/HH give the
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s\_ best classification results at each of the aspects examined (i.e., 0°, 45°, 90°, and &
L 1807 aspects). The other plots illustrating the ratio feature vector types with the i
:: Vo g and Gy backscattered components in the denominator tend to have a '
:.:\:': wide spread in misclassification performance versus aspect angle. This is especially :5
,' evident in the feature vector types HH/VH and VH/VH. In both cases at the aspect .
. -, angles of 09 and 180° the misclassification levels are very ligh relative to the other -
::i.- curves at 45 and 90°. At these angles (i.e., 0° and 180°) the VH backscattered o
:'. coefficients are at a very low level due to the symmetry of the target at these %
Qi aspects. This causes the VH backscattered coefficient to be very unstable at high .::‘
o
-\;. noise levels causing the ratio feature vectors containing the /-y component in

N "
" the denominator to attain poor classification performance. In fact, all the ratio v
iy . : , : :

o types that have a component in the denominator which contains less signal energy

s

:'f, than that of the numerator component exhibit poor classification performance. As
:—'\‘: for the best performing linear polarized ratio feature vector, FVV"/HH, the HH ".
o co-pol radar contains the strongest field components and provides the most stable
‘:\':ES term for the denominator. This fact is evident by the close grouping of performance :E.':
Coliy '
\-h:: curves for the four aspect angle tested in the FV'YV/HH feature vector, the 0%
:) . misclassification breakaway point spans a noise power range of approximately 12 5
B}
‘ \:EE dB while the other ratio {eature vectors may span as much as 20 to 30 dB in noise s
:. "2 power. =
» Compared to the HH feature vector performance curves presented in Figure 41, ;
St ]
E‘_E:H' where the 07¢ misclassification level for all aspects is at a noise power level of ..
\:; approximately 20 dB. the performance of the ratio type feature vectors generate é_

Al little excitement. But one must be careful not to make such a direct comparison -
e

-:::: between the two types of feature vectors without considering the reasons that 2
AL

:f-::: a ratio feature vector type may be implemented. As stated in Chapter 3, the <.
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B
P 'C: ratio feature vector (a relative relationship) may be more useful in an environment ‘s
ff.g‘ o
v ! where intrinsic (exact) measurements may be hard to obtain, such as in an Over .
75_» The Horizon (OTH) radar system where ionospheric propagation tend to make
N
\}': < calibration of intrinsic data very difficult. Also the ionospheric induced errors
IR
A contain multiplicative components that the ratio quantity has higher immunity
& g too by virtue of cancellation by division of the two backscattered coefficients.
)
YR 5.5.4.2 Circular Polarized Ratio Feature Vectors
!
6_:" »
Figures 53 through 58 show the misclassification performance plots for the
"0 ﬁc i
Y A
f",o v six possible ratio combinations of the circular polarized backscattered components :5
N v
’ - = = . . . . g
::‘ E VORR, VOLL, and /og (see Table 5). As with the linear polarized ratio feature N
et 4
H vectors, the circular polarized ratio feature vectors that have a lower energy com- .
N y. ‘ :;\
2R ponent in the denominator tend to have a wider span of classification performance o
>, 2
Ay T iy
o for the four aspect angles examined. :'
R i For the circular polarized ratio feature vectors, no one ratio type stands out
w8 . 3
SN as the best performer for the four aspects examined. Although the feature vector 3
Y 4
o, - types RL/RR and RL/LL have a better overall grouping of performance curves E
oy ™ t
i for the four aspects, they do not provide the best classification performance levels. ]
il o ~ N
;:" For the best results, a polarization agile radar system capable of measuring all the "
o o
) .. . . . O
‘, -;_': polarizations needed to construct the optimal ratio types for a given aspect would v
.‘.' L] l:
- - provide the best performance. With this system, and a priori knowledge of the .ij
'\-: o aspect of the target (i.e., from tracking information), the optimized circular ratio
¥ d
> Ly,
KN feature vectors would provide very acceptable levels of performance at all aspect :
s
) .
€ angles. Figure 59 shows a polarization agile system providing the best classification
. - performance for the four examined aspects. The system utilizes the LL/RL ratio ':
e ,
3
x type for the near broadside aspects, the RR/LL or RL/LL type for the 45° aspect, N
' 3
&
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the RL/LL type for the 0° aspect, and the RL/RR type for the 180° aspect angle.
With the polarization agile implementation, and the quasi roll independence of the
circular components, the circular polarized ratio feature vector provides slightly
better classification perforinance then the best linear polarized ratio vector feature
type VV/HH.

5.5.5 Polarization Diverse Feature Vectors

As presented in Chapter 3, the polarization diverse feature vectors utilize
the full backscattered polarization matrix, that is, for a linear diverse feature
vector the backscattered components /6y, /ovv, and /6y g are used in the
construction of the feature vector (see Table 2). The components \/Ggg, V7L,
and @Ry are used in the construction of a circularly polarized diverse feature
vectors (see Table 3). One advantage of a polarization diverse feature vector, such
as the concatenation type feature vector, is: by utilizing the three polarization
components a large feature space is created with only a few {requency samples.

Figures 69 through 63 show four plots of misclassification curves illustrating
the performance of two types of polarization diverse feature vectors. Figures 40 and
t1 shiow the concatenation type feature vector for the linear and circular polarized
components, respectively. As in preceeding sections, 100 independent experiments
were performed with the coherent nearest neighbor distance metric. Instead of
e 10 equally spaced frequency only 4 equally spaced frequency samples across

<~ v Ml hand were chosen for this case. Four frequency samples provides a 12
+ocatenation feature vector (i.e.. # of frequency samples x 3 polarization
ceoto thns keeping the feature space dimension close to the 10 element

e of the precerding sections.

weothe levele of classification performance are very close to that
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of the HH, RR, LL, and RL feature vectors types. With performance levels so
close and the feature space size approximately equall; the basis for choosing a po-
larization diverse feature vector may lie in the cost of frequencies versus the cost of
polarization agility. That is, whether the cost of six to eight additional frequency
interrogations is more or less than the cost and of measureing two additional po
larizations states.

Figures 62 and 63 show another type of polarization agile processing. These
plots represent a summation of the three linear polarized (see Table 2) and three
circular polarized (see Table 3) components at each frequency sample. respectively.
As with the concatenation feature vector tyvpes presented above, Figure 62 and 63
represent a feature vector at four evenly spaced frequency samples. But, instead
of vielding a 12 element feature vector only a 4 element feature vector 1< created,
In Figure 62 the hnear polatized sunnmation feature vector type presents a 0%
misclassification level from approximately 10 to 15 dBm? in noise power for four
aspect angles exanuned. In Figure 623 the circular polanized suimmation feature
vector type presents a 00 nnsclassification fevel clustered at a noise power level of
approximately 17 dBm= for the four aspects While the clasafication performance
of the sutnmation feature vector typesycshghtiy less then that of the concatenation
tyvpes. onhy four elements are contamed i the feature vectar versus 12 for the
concatenation feure vector tvpe

In both tyvpes of polanization diverse feature vectors, the circular polarized
feature vector perfarni at levels close ta. or hetter. than their hnear polarized
counterparts. With the additional quality of nmuamey to the roll of a svimmetrical
target, the circular polarized diverse feature vectors present a appealing classifica-
tion tool.

I'he linea- polanzed diverse feature vector may be improved by the deletion
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5.6 Classification Results for Larger Aspect Zones

2 i
L)
'I\' i
nX 4
w .‘
‘.'. . .R
R . . \ . . ey e
-: of the VH component. As seen in Section 5.5.2, the VH component exhibits poor ) '
~ Ll
A L . .
e classification performance at the nose-on, and tail-on aspect angles. A concate- -
Vb nation and summation feature vector utilizing only the VV and HH components ! y
e {
_.:-f: may prove to be significately better than the V'V, HH, and VH combination for an )
i .t-' 0:3. M
Y equivalent feature space dimension. >
e . . m ;_‘
*',) 5.5.8 Axial Ratio Feature Vectors R
; L
oy L
N, v . . . . . - 4
! I'he axial ratio feature vectors are a non-coherent combination of the circular oa
38 [t i
hackscattered coethcients (see Table 6).
\]
e Firures 64 through 66 show the misclassification results for transmitting left oo
O] . \]
" . . . . )
‘ Q circular (LAKR). transmitting right circular (RAR), and a concatenation of the ) ¢
) & i
o‘\,‘i . ot
' two. Figures 64 and 65 show that the performance of the non-coherent quantities ;
- “w
# ‘.
0O are at noise power levels of about 10 to 15 dB below that of the coherent VV, D :
- W f
- HH. RR. LL. RL feature vector types employing the same feature space (i.e., 10 »
‘,-.' - )
frequency samples). Even with the concatenation of the two axial ratio feature . '
N 3
<. vector types RAR and LAR. the classification performance is increased only 5 dB X
W s
o while the feature spaced is doubled (Figure 66). Like the ratio feature vector types ) i
"‘.: a*
‘ presented in Section 5.5.4, the use of axial ratio feature vectors could provide some - )
"' additional noise imnnunities qualities in a multiplicative noise environment. N
- 4
B J'.‘ Y :t
o §.
-, ‘
» »

.

e, In this section the classification performance of larger aspect zones is analyzed R B
7% I
rly . . Iyt

) by expanding the catalog and test sets of the RSSE computer program. The ex- byt

&
. . - P

2 "‘ periments are performed by adding additional target feature vectors to the catalog o &

g and test sets at increments of 10°. As in preceeding sections, 100 independent G )
. .
s . . .

o experiments were perforined with 10 frequency samples, and the coherent nearest ot ‘:
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neighbor distance metric. For this study, however, only the HH feature vector
type and the 30 MHz bandwidth from 8-38 MHz were chosen to illustrate the
performance of the larger aspect zones. As previously presented, the 10 frequency
sample HH feature vector provides very good classification performance levels ver-
sus noise power. Also, the 8-38 MHz band is very close to the 8-16 MHz band in
misclassification performance.

To begin this study, a set of “baseline” classification performance curves were
generated. These curves, which serve as a reference to compare to the classification
performance of the larger aspect zones, represent a pairwise classification between
five feature vectors (one per target) in the test and catalog sets for each aspect
angle examined. Figures 67 through 70 show the reference curves for azimuth
aspects ranging from 0° to 180° by increments of 10° (azimuths angle of 120°,
130°, and 140° are not included). The four plots show that the misclassification
levels of 1% range from 19 to 25 dBm?® in noise power for all aspects. From
the four figures the best classification performance levels are obtained at nose-on,
tail-on, broadside. and close broadside (i.e., angles from 70° to 110°). The worst
classification performance is seen in the forward sector, at the aspect angles of 10
and 20°, where the backscattered signal power is at a minimum.

Before the curves representing the misclassification performance of the larger
aspect zones are analvzed; two output listings from the RSSE computer program
are presented to clarify the counting of misclassification statistics for the larger
aspect zones.

Shown in Figures 71 and 72 are the two computer output listings representing
the misclassification statistics for a two angle and a three angle test and catalog
set, respectively. In Figure 71 the Test Target Numbers (TT#) and the Catalog

Target Numbers (CT# ) are numbers ranging from 1 to 10. In each set the target
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numbers 1&2, 3&4, 5&6, T&8, and 9&10, represent the 0° & 10° azimuth angle Cﬁd

positions for each of the five aircraft. Blocks enclosing the two angles represent .

the number of times the targets were correctly classified. Outside the blocks are !'

; the numbers of times the target feature vector was misclassified. For example, test -

target feature vector #1 was considered correctly classified 97 times (86 + 11), 86 "

times being the correct vector and 11 times being the wrong vector but the correct §

E\E target. Therefore, out of 100 experiments, TT#1 was misclassified only 3 times 7

3 (3%). once as target #2, once as target #3, and once as target #4. The average '3

misclassification percentage for this case is the average of the 10 individual TT# ".3

EES misclassification percentages listed at the far right column of confusion matrix. N

: The average misclassification percentage for the 10 dBm? noise power confusion @

1atrix shown in Figure 71 is 9.2%. Finally, the numbers plotted are the average

5.'-;'2 misclassification numbers tabulated from the incremented noise power confusion =

AN

z:j matrices. i
| Figure 72 shows a confusion matrix for a 3 angle test and catalog set at the

Eé noise power level of 30 dBm?>. In this section the misclassification performance ~:‘
XX results from a 4 angle test and catalog set are also presented, and the misclassifi-

cation statistics for both the 3 and 4 angle cases are treated in a similar manner %

as the 2 angle test and catalog set presented above. "

oo Figures 73 through 75 show the results for the two, three, and four, angle =

3 catalog sets for the forward aspect sector (i.e., 0, 10, 20, and 30 degrees). In Fig- E"

5-:;: ure 73 the curves for the two angle catalog sets contains three perforimance curves )

d-:; representing the 0° & 10°, 10° & 20°, and 20° & 30° aspects. The performance 2

curves in Figure 73 tend to reach a level of classification performance between the

.
“.Aa
s ey,

two individual angle cases shown in Figure 67 (i.e., the 0° & 10° performance curve

lies between the 0° and 10” performance curves of Figure 67, ect...). Increasing
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the catalog set to the three angle case, a 30° aspect zone, the classification perfor-

mance decreases to the level of the worst single angle performance curve included
in the three angle set (see Figure 67). Figure 74 shows two misclassification per-
formance curves representing three angle catalog cases of 0° & 10° & 20°, and
10° & 20° & 30°. In each case the misclassification performance curves reach the

level of performance of the 10° single angle case of Figure 67. Finally, in Figure 75

.
‘

the four angle case for the forward sector is shown along with the four angle cat-
alog sets representing the single angle catalog sets shown in Figures 68 through
70. In each cases the 0% misclassification level is attained at the level of the worst
performing single angle catalog of the sector under test. The four angle forward
sector catalog set attains misclassification levels at approximately the performance
levels of the 10° single aspect angle catalog set shown in Figure 67. The four angle
catalog set of 40°. 50° 60°, and 70°, attains misclassification levels at approx-
imately the performance levels of the 60° single aspect angle catalog set shown
in Figure 68. The four angle catalog set of 80°, 90° 100°, and 110°, attains
misclassification levels at approximately the performance levels of the 100° single
aspect angle catalog set shown in Figure 69. The rear sector four angle catalog
set attains misclassification performance levels at approximately the performance
levels of the 170° single aspect angle catalog set shown in Figure 70. The results
clearly show that the misclassification statistics of an expanded angle catalog set
perform at levels approximately equal to the statistics of the worst single angle

catalog in the expanded catalog set.
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8.0 - 36.0 MHz 10 rrequencies
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Average misclassification percentage : 9.20 %

Misclassification percentage is based on the test targets name.

Figure 71: Example; Double Angle Confusion Matrix
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A CHAPTER VI

SUMMARY OF RESULTS
W
‘:ﬂ This report has examined five aspects of radar target identification techniques
B applied against a polarization diverse aircraft data base. Plots have been gener-
:g: ated to examine misclassification performance levels versus such parameters as:
:‘§ the number of frequencies, frequency bandwidth, classification algorithims, various
‘z feature vectors, and an expanded aspect catalog set. Some high points from these
. five aspects can be summarized as follows:
"
e

* The backscattered response of the aircraft scatterer typically die out before

-

3.5 transit times across the length of the target. To meet Shannon’s criterion

.

;,." the sampling rate Af must satisfy Af < 3%, where [ is the largest dimension of ;
2; the aircraft. From this criterion the minimum number of frequencies for a given

:'“ bandwidth can be derived from the following relationship: “\ a
E' Number of Frequencies = w , where BW is the frequency bandwidth. ]
.E:: * The lower frequency bands of the aircraft data base provided the highest im- Eﬁ

{-

munity to the additive white zero mean Gaussian noise model. The near resonance

ol
A

K frequency bandwidth of 8 - 16 MHz for the measured polarization schemes of HH
)
o and VV contained the largest monostatic radar returns, thus providing the highest

|~

noise immunity. As a function of aspect the highest signal energy was encountered

.

: most often at broadside incidence (i.e., 90° azimuth, 0° elevation and roll), making @
v

s the 90° aspect the most immune to additive noise and the best aspect for target

W s
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‘w identification.

* The classification algorithin study has shown that the Coherent Nearest
! Neighbor distance metric provides approximately a 10 dB improvement in noise
. immunity over the Non-Coherent distance metric and approximately a 5 dB im-
i provement over the Time Domain Cross Correlation method. Although coherent
E intrinsic (exact) phase measurements are difficult to obtain, a 10 d B improvement
i is clearly a significant gain in performance.
'; * Of all the feature vector types examined, the co-pol linear feature vectors
- FVHH and FVVV| the circular feature vectors FVLL, FVRR and FVRL a,d
:-l".: the polarization diverse feature vector FVCONCAT (4641 linear and circular),

provided the best classification performance against the additive white zero mean

K

Gaussian noise model. OQut of the seven feature vectors mentioned above, no one

:f type exhibited any significant advantage in classification performance over the
‘_J'
others. However, the circular feature vectors do provide some independence in
a regard to the roll of the aircraft, especially in the symmetric look angles of nose-
- on and tail-on. The polarization diverse feature vectors require a smaller number
Tu
< of frequency samples to provide the same classification levels. It also should be
metioned that the ratio feature vectors types were not fully examined. The ratio
-
types may provide some additional benefits in a multiplicative noise environment
':,: by virtue of the division of the backscattered components.
op * Increasing the catalog set by adding additional feature vectors that cover
2 a range of aspects tend to decrease the classification performance level relative to
t» that of the worst single angle catalog set level.
o
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APPENDIX A

BACKSCATTERED COEFFICIENTS

A.1 Linear Polarized Measured Coefficients

SR Mg aie st i adbidedbac:ys

The RSSE feature vectors are derived by using various linear and non-linear com-
binations of the complex backscattered coefficients from six simulated RSSE radar
types. Three of these feature vectors were obtained from direct measurements on
scale model aircraft in the OSU compact range. They are the linear polarized complex

backscattered coefficients: 6,1;“;;. 687, and &Vf{'

A simple representation of the measurement process for the transmit horizontal, re-
ceive horizontal, backscattered coefficient, &g%, can be illustrated as shown in Figure

76.

For time harmonic fields, we have:  E; = E et

In the far field, we can write:

So;
(8- | k]

The Matrix multipication yields:

=7 =BS - sBS -BS
E =FE |4=:,=%E} —f,{ie"fk" + gE?} —He gkzs
-+BS =BS
=Ey +Ev
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At the terminals of the Mono-static Horizontal Polarized Radar, we have:

- =T . -BS BS - 535 iz
ET =F Oz = EH —4H1l'ﬂ = by _4Hﬂ'ﬂe—1 (21+za)

Calibrating out the Radar Range dependence ( ie. dropping the e~ Tk(zi+25) term ).
we obtain;

amEr _ [3BS =BS _ 4 E}
47r—E’:— ogy o aHH—41r-E:§
Similarly, we can illustrate the measurment process for the other two backscattered

coefficients: &55, and &5?}.

Also; 65;3 = &gf, by the reciprocity theorem.
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f; A.2 Circular Polarized Synthesized Coefficients O .‘.:
¥, MY,
" To obtain the circular polarized feature vectors, synthesized circular polarized =
radars are created by using the linear polarized backscattered coefficients in a polariza- H
-;ﬁ' tion transformation. The derivation of the Left - Left circular antenna shown in Figure
f:: 77 is as follows: .
& @
Wt . . .
W't Transmitting Left Circular Polarization (LCP)
-l
:::‘ e(t,z) = (%)[i‘sin(wt—kz)+ycos(wt—kz)] m
3,
"I
;::| Or in Phasor Notation; ﬁ
L}
-1 - = -
as. - ~ E —k= ° ~ FE —9 E . a N —1
i Bee ()i () = Gt v 3
¢
?:' =t =t
:'u =—-jEg+ Ey g
:‘, =t =t E-L ks =t =t
:. E:E':::i_(ﬁ)e] ‘[—]1‘+y]:—]EH+EV 4&
e !

o A
—_
o

-
§ )
1
—
PO
> |Q-’
e
—
e
—
2.1
|
LY
o~
"3

Sl So'
:'.

: - UHH -H]' - 1.‘-
& Ey | _ ix (% ~JEy | -iks e
*) Ef, \/6\']1 \/-VV Ei,

‘ 4r 4ar ,
X . 1
b The Matrix multipication yields:

A
rg
N =T =BS B3 8BS, §
ey E =F |s~z, =7 [—]E;l\/ {f’rfi + {,\/ ﬁr‘] e—Jkzs
{ o
5BS =BS E

: i (/0T i (/9 - jks
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At the terminals of the Mono-static LCP Synthesized Radar, we have:

. =r =r —jr 4+ vy - .
E, = (EH + Ev) ® (—J\/-Ty) = 55 (-iEy + EY)

antenna
Bo= 1 |g \/555 i \/ i \/ H Ez,/ e—ikzs
r=,|FHV 4 T J -7 X + Xx
i _ _E ~BS sBS _o: [ZBS| —jk(zi+
Er =37 [‘V"HH +Voyy - 2J\/"wur] e Ikzitz)
Calibrating out the Radar Range dependence ( ie. dropping the e 7%(2i+2s) term ).
we obtain;
#BS = Jank 5BS =BS . /5BS
VoLL = Var g = [\/"w \/"HH] —IVoVH
Similarly, we can derive \/URR. and \/URL as;
=BS _ 1| /=BS =BS . /=BS
\/"RR =2 [\/"HH - \/"vv] —]\/GVH
=BS =BS -BS =BS
VLR = VORL = 71 [ v+ \/”HHJ
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Figure 76: Representation of the Measurement Process for the &g% Coefficient
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